|
|
| Line 1: |
Line 1: |
| − | A nice efficent small kD-Tree. It's quite fast... Feel free to use
| + | {{Navbox small |
| | + | | title = Wraith Sub-pages |
| | + | | parent = Wraith |
| | + | | page1 = Version History |
| | + | | page2 = Challenge Results |
| | + | | page3 = Wolfman's TODO List |
| | + | }} |
| | | | |
| − | <code><pre>
| + | Wraith is a refactor of my bot [[AgentSmithRedux]]. |
| − | /**
| |
| − | * Copyright 2009 Rednaxela
| |
| − | *
| |
| − | * This software is provided 'as-is', without any express or implied
| |
| − | * warranty. In no event will the authors be held liable for any damages
| |
| − | * arising from the use of this software.
| |
| − | *
| |
| − | * Permission is granted to anyone to use this software for any purpose,
| |
| − | * including commercial applications, and to alter it and redistribute it
| |
| − | * freely, subject to the following restrictions:
| |
| − | *
| |
| − | * 1. The origin of this software must not be misrepresented; you must not
| |
| − | * claim that you wrote the original software. If you use this software
| |
| − | * in a product, an acknowledgment in the product documentation would be
| |
| − | * appreciated but is not required.
| |
| − | *
| |
| − | * 2. This notice may not be removed or altered from any source
| |
| − | * distribution.
| |
| − | */
| |
| | | | |
| − | package ags.utils;
| + | {{Infobox Robot |
| | + | | author = [[User:Wolfman|Wolfman]] |
| | + | | extends = [[AdvancedRobot]] |
| | + | | targeting = Virtual Guns with Linear, Circular and Head On Targeting |
| | + | | movement = [[DangerPrediction]] |
| | + | | current_version = 0.1 |
| | + | | download_link = https://drive.google.com/uc?export=download&id=1MlGa-docshYLFIc2udl5qOyXdT4xL6KF |
| | + | | isOpenSource = no |
| | + | | isOneOnOne = yes |
| | + | | isMelee = not yet but planned |
| | + | }} |
| | | | |
| − | import java.util.ArrayList;
| + | == Background Information == |
| − | import java.util.Arrays;
| |
| − | import java.util.HashMap;
| |
| − | import java.util.LinkedList;
| |
| − | import java.util.List;
| |
| | | | |
| − | /**
| + | Returning after 3 years, I wanted to have a bit of fun and restart some robocode projects. Taking [[AgentSmithRedux]] and improving upon it for fun. |
| − | * An efficient well-optimized kd-tree
| |
| − | *
| |
| − | * @author Rednaxela
| |
| − | */
| |
| − | public class KdTree<T> {
| |
| − | // Static variables
| |
| − | private static final int bucketSize = 32;
| |
| | | | |
| − | // All types
| + | It is currently in very early testing and is not expected to be competitive till it has all its intended features & iteration. |
| − | private final int dimensions;
| |
| − | private final KdTree<T> parent;
| |
| | | | |
| − | // Root only
| + | == Strategy == |
| − | private final HashMap<Object, T> map;
| |
| − | private double[] weights;
| |
| − | private final LinkedList<double[]> locationStack;
| |
| − | private final Integer sizeLimit;
| |
| | | | |
| − | // Leaf only
| + | ;How does it [[:Category:Movement|move]]? |
| − | private double[][] locations;
| |
| − | private int locationCount;
| |
| | | | |
| − | // Stem only
| + | An evolution of the technique I've currently called [[DangerPrediction]] from [[AgentSmith]] which is a form of minimum risk movement whereby it plans its route ahead based on incoming predicted bullet positions from the enemies. It should theoretically work exactly the same in 1v1 and melee as the only difference is more incoming bullets in melee to avoid. Still plan to do a write up of [[DangerPrediction]] once its been nailed down and is competitive in 1v1. |
| − | private KdTree<T> left, right;
| |
| − | private int splitDimension;
| |
| − | private double splitValue;
| |
| | | | |
| − | // Bounds
| + | At the time of writing it will dodge HOT & linear guns at around 99+% efficiency, but does not yet take into account more advanced techniques that could be fired at it. |
| − | private double[] minLimit, maxLimit;
| |
| | | | |
| − | // Temporary
| + | ;How does it [[:Category:Targeting|fire]]? |
| − | private Status status;
| |
| | | | |
| − | /**
| + | Its currently just got a simple Virtual Gun array at the moment choosing the best gun between various guns including Linear, Circular and Head On. |
| − | * Construct a KdTree with a given number of dimensions
| |
| − | */
| |
| − | public KdTree(int dimensions) {
| |
| − | this(dimensions, null);
| |
| − | }
| |
| | | | |
| − | /**
| + | ;How does it [[Dodging Bullets|dodge bullets]]? |
| − | * Construct a KdTree with a given number of dimensions and a limit on
| |
| − | * maxiumum size (after which it throws away old points)
| |
| − | */
| |
| − | public KdTree(int dimensions, Integer sizeLimit) {
| |
| − | this.dimensions = dimensions;
| |
| | | | |
| − | // Init as leaf
| + | See Movement above! |
| − | this.locations = new double[bucketSize][];
| |
| − | this.locationCount = 0;
| |
| | | | |
| − | // Init as root
| + | == Additional Information == |
| − | this.map = new HashMap<Object, T>();
| |
| − | this.weights = new double[dimensions];
| |
| − | Arrays.fill(this.weights, 1.0);
| |
| − | this.parent = null;
| |
| − | this.sizeLimit = sizeLimit;
| |
| − | if (sizeLimit != null) {
| |
| − | this.locationStack = new LinkedList<double[]>();
| |
| − | }
| |
| − | else {
| |
| − | this.locationStack = null;
| |
| − | }
| |
| − | }
| |
| | | | |
| − | /**
| + | ;Where did you get the name? |
| − | * Constructor for child nodes. Internal use only.
| |
| − | */
| |
| − | private KdTree(KdTree<T> parent, boolean right) {
| |
| − | this.dimensions = parent.dimensions;
| |
| | | | |
| − | // Init as leaf
| + | Wraiths can only be hit by magical weapons! ;) |
| − | this.locations = new double[Math.max(bucketSize, parent.locationCount)][];
| |
| − | this.locationCount = 0;
| |
| | | | |
| − | // Init as non-root
| + | == Credits == |
| − | this.map = null;
| |
| − | this.parent = parent;
| |
| − | this.locationStack = null;
| |
| − | this.sizeLimit = null;
| |
| − | }
| |
| | | | |
| − | /**
| + | Currently contains the source code for Raiko Micro's gun, but it is disabled as it was required for MC2K7 challenge testing. |
| − | * Get the number of points in the tree
| |
| − | */
| |
| − | public int size() {
| |
| − | return locationCount;
| |
| − | }
| |
| | | | |
| − | /**
| + | == Thanks To == |
| − | * Add a point and associated value to the tree
| |
| − | */
| |
| − | public void addPoint(double[] location, T value) {
| |
| − | KdTree<T> cursor = this;
| |
| | | | |
| − | while (cursor.locations == null || cursor.locationCount >=
| + | Everyone who contributes to the RoboWiki. It's an awesome resource, be proud of yourselves! |
| − | cursor.locations.length) {
| |
| − | if (cursor.locations != null) {
| |
| − | cursor.splitDimension = cursor.findWidestAxis(this.weights);
| |
| − | cursor.splitValue = (cursor.minLimit[cursor.splitDimension] + cursor.maxLimit[cursor.splitDimension]) * 0.5;
| |
| | | | |
| − | // Never split on infinity or NaN
| + | [[Category:1-vs-1_Bots|Wraith]] |
| − | if (cursor.splitValue == Double.POSITIVE_INFINITY) {
| |
| − | cursor.splitValue = Double.MAX_VALUE;
| |
| − | }
| |
| − | else if (cursor.splitValue == Double.NEGATIVE_INFINITY) {
| |
| − | cursor.splitValue = -Double.MAX_VALUE;
| |
| − | }
| |
| − | else if (Double.isNaN(cursor.splitValue)) {
| |
| − | cursor.splitValue = 0;
| |
| − | }
| |
| − | | |
| − | // Don't split node if it has no width in any axis. Double the bucket size instead
| |
| − | if (cursor.minLimit[cursor.splitDimension] == cursor.maxLimit[cursor.splitDimension]) {
| |
| − | double[][] newLocations = new double[cursor.locations.length * 2][];
| |
| − | System.arraycopy(cursor.locations, 0, newLocations, 0, cursor.locationCount);
| |
| − | cursor.locations = newLocations;
| |
| − | break;
| |
| − | }
| |
| − | | |
| − | // Don't let the split value be the same as the upper value as can happen due to rounding errors!
| |
| − | if (cursor.splitValue == cursor.maxLimit[cursor.splitDimension]) {
| |
| − | cursor.splitValue = cursor.minLimit[cursor.splitDimension];
| |
| − | }
| |
| − | | |
| − | // Create child leaves
| |
| − | KdTree<T> left = new KdTree<T>(cursor, false);
| |
| − | KdTree<T> right = new KdTree<T>(cursor, true);
| |
| − | | |
| − | // Move locations into children
| |
| − | for (double[] oldLocation : cursor.locations) {
| |
| − | if (oldLocation[cursor.splitDimension] > cursor.splitValue) {
| |
| − | // Right
| |
| − | right.locations[right.locationCount] = oldLocation;
| |
| − | right.locationCount++;
| |
| − | right.extendBounds(oldLocation);
| |
| − | }
| |
| − | else {
| |
| − | // Left
| |
| − | left.locations[left.locationCount] = oldLocation;
| |
| − | left.locationCount++;
| |
| − | left.extendBounds(oldLocation);
| |
| − | }
| |
| − | }
| |
| − | | |
| − | // Make into stem
| |
| − | cursor.left = left;
| |
| − | cursor.right = right;
| |
| − | cursor.locations = null;
| |
| − | }
| |
| − | | |
| − | cursor.locationCount++;
| |
| − | cursor.extendBounds(location);
| |
| − | | |
| − | if (location[cursor.splitDimension] > cursor.splitValue) {
| |
| − | cursor = cursor.right;
| |
| − | }
| |
| − | else {
| |
| − | cursor = cursor.left;
| |
| − | }
| |
| − | }
| |
| − | | |
| − | cursor.locations[cursor.locationCount] = location;
| |
| − | cursor.locationCount++;
| |
| − | cursor.extendBounds(location);
| |
| − | | |
| − | this.map.put(location, value);
| |
| − | if (this.sizeLimit != null) {
| |
| − | this.locationStack.add(location);
| |
| − | if (this.locationCount > this.sizeLimit) {
| |
| − | this.removeOld();
| |
| − | }
| |
| − | }
| |
| − | }
| |
| − | | |
| − | /**
| |
| − | * Extends the bounds of this node do include a new location
| |
| − | */
| |
| − | private final void extendBounds(double[] location) {
| |
| − | if (minLimit == null) {
| |
| − | minLimit = new double[dimensions];
| |
| − | System.arraycopy(location, 0, minLimit, 0, dimensions);
| |
| − | maxLimit = new double[dimensions];
| |
| − | System.arraycopy(location, 0, maxLimit, 0, dimensions);
| |
| − | return;
| |
| − | }
| |
| − | | |
| − | for (int i=0; i<dimensions; i++) {
| |
| − | if (Double.isNaN(location[i])) {
| |
| − | minLimit[i] = Double.NaN;
| |
| − | maxLimit[i] = Double.NaN;
| |
| − | }
| |
| − | else if (minLimit[i] > location[i]) {
| |
| − | minLimit[i] = location[i];
| |
| − | }
| |
| − | else if (maxLimit[i] < location[i]) {
| |
| − | maxLimit[i] = location[i];
| |
| − | }
| |
| − | }
| |
| − | }
| |
| − | | |
| − | /**
| |
| − | * Find the widest axis of the bounds of this node
| |
| − | */
| |
| − | private final int findWidestAxis(double[] weights) {
| |
| − | int widest = 0;
| |
| − | double width = (maxLimit[0] - minLimit[0]) * weights[0];
| |
| − | if (Double.isNaN(width)) width = 0;
| |
| − | for (int i = 1; i < dimensions; i++) {
| |
| − | double nwidth = (maxLimit[i] - minLimit[i]) * weights[i];
| |
| − | if (Double.isNaN(nwidth)) nwidth = 0;
| |
| − | if (nwidth > width) {
| |
| − | widest = i;
| |
| − | width = nwidth;
| |
| − | }
| |
| − | }
| |
| − | return widest;
| |
| − | }
| |
| − | | |
| − | /**
| |
| − | * Remove the oldest value from the tree.
| |
| − | * Note:
| |
| − | * This cannot trim the bounds of nodes, nor empty nodes, and thus you
| |
| − | * can't expect it to perfectly preserve the speed of the tree as you
| |
| − | * keep adding.
| |
| − | */
| |
| − | private void removeOld() {
| |
| − | double[] location = this.locationStack.removeFirst();
| |
| − | KdTree<T> cursor = this;
| |
| − | | |
| − | // Remove from the HashMap
| |
| − | this.map.remove(location);
| |
| − | | |
| − | // Find the node where the point is
| |
| − | while (cursor.locations == null) {
| |
| − | if (location[cursor.splitDimension] > cursor.splitValue) {
| |
| − | cursor = cursor.right;
| |
| − | }
| |
| − | else {
| |
| − | cursor = cursor.left;
| |
| − | }
| |
| − | }
| |
| − | | |
| − | for (int i=0; i<cursor.locationCount; i++) {
| |
| − | if (cursor.locations[i] == location) {
| |
| − | System.arraycopy(cursor.locations, i+1, cursor.locations, i, cursor.locationCount - i - 1);
| |
| − | do {
| |
| − | cursor.locationCount--;
| |
| − | cursor = cursor.parent;
| |
| − | } while (cursor.parent != null);
| |
| − | return;
| |
| − | }
| |
| − | }
| |
| − | // If we got here... we couldn't find the value to remove. Weird...
| |
| − | }
| |
| − | | |
| − | /**
| |
| − | * Sets the weighting on dimensions used
| |
| − | */
| |
| − | public void setWeights(double[] weights) {
| |
| − | this.weights = weights;
| |
| − | }
| |
| − | | |
| − | /**
| |
| − | * Enumeration representing the status of a node during the running
| |
| − | */
| |
| − | private static enum Status {
| |
| − | NONE,
| |
| − | LEFTVISITED,
| |
| − | RIGHTVISITED,
| |
| − | ALLVISITED
| |
| − | }
| |
| − | | |
| − | /**
| |
| − | * Stores a distance and value to output
| |
| − | */
| |
| − | public static class Entry<T> {
| |
| − | public final double distance;
| |
| − | public final T value;
| |
| − | private Entry(double distance, T value) {
| |
| − | this.distance = distance;
| |
| − | this.value = value;
| |
| − | }
| |
| − | }
| |
| − | | |
| − | /**
| |
| − | * Calculates the nearest 'count' points to 'location'
| |
| − | */
| |
| − | public List<Entry<T>> nearestNeighbor(double[] location, int count) {
| |
| − | KdTree<T> cursor = this;
| |
| − | cursor.status = Status.NONE;
| |
| − | double range = Double.POSITIVE_INFINITY;
| |
| − | ResultHeap resultHeap = new ResultHeap(count);
| |
| − | | |
| − | do {
| |
| − | if (cursor.status == Status.ALLVISITED) {
| |
| − | // At a fully visited part. Move up the tree
| |
| − | cursor = cursor.parent;
| |
| − | continue;
| |
| − | }
| |
| − | | |
| − | if (cursor.status == Status.NONE && cursor.locations != null) {
| |
| − | // At a leaf. Use the data.
| |
| − | for (int i=0; i<cursor.locationCount; i++) {
| |
| − | double dist = sqrPointDist(cursor.locations[i], location, this.weights);
| |
| − | resultHeap.addValue(dist, cursor.locations[i]);
| |
| − | }
| |
| − | range = resultHeap.getMaxDist();
| |
| − | | |
| − | if (cursor.parent == null) {
| |
| − | break;
| |
| − | }
| |
| − | cursor = cursor.parent;
| |
| − | continue;
| |
| − | }
| |
| − | | |
| − | // Going to descend
| |
| − | KdTree<T> nextCursor = null;
| |
| − | if (cursor.status == Status.NONE) {
| |
| − | // At a fresh node, descend the most probably useful direction
| |
| − | if (location[cursor.splitDimension] > cursor.splitValue) {
| |
| − | // Descend right
| |
| − | nextCursor = cursor.right;
| |
| − | cursor.status = Status.RIGHTVISITED;
| |
| − | }
| |
| − | else {
| |
| − | // Descend left;
| |
| − | nextCursor = cursor.left;
| |
| − | cursor.status = Status.LEFTVISITED;
| |
| − | }
| |
| − | }
| |
| − | else if (cursor.status == Status.LEFTVISITED) {
| |
| − | // Left node visited, descend right.
| |
| − | nextCursor = cursor.right;
| |
| − | cursor.status = Status.ALLVISITED;
| |
| − | }
| |
| − | else if (cursor.status == Status.RIGHTVISITED) {
| |
| − | // Right node visited, descend left.
| |
| − | nextCursor = cursor.left;
| |
| − | cursor.status = Status.ALLVISITED;
| |
| − | }
| |
| − | | |
| − | // Check if it's worth descending. Assume it is if it's sibling has not been visited yet.
| |
| − | if (cursor.status == Status.ALLVISITED) {
| |
| − | if (nextCursor.locationCount == 0 || sqrPointRegionDist(location, nextCursor.minLimit, nextCursor.maxLimit, this.weights) > range) {
| |
| − | continue;
| |
| − | }
| |
| − | }
| |
| − | | |
| − | // Descend down the tree
| |
| − | cursor = nextCursor;
| |
| − | cursor.status = Status.NONE;
| |
| − | } while (cursor.parent != null || cursor.status != Status.ALLVISITED);
| |
| − | | |
| − | ArrayList<Entry<T>> results = new ArrayList<Entry<T>>(count);
| |
| − | Object[] data = resultHeap.getData();
| |
| − | double[] dist = resultHeap.getDistances();
| |
| − | for (int i=0; i<resultHeap.values; i++) {
| |
| − | T value = this.map.get(data[i]);
| |
| − | results.add(new Entry<T>(dist[i], value));
| |
| − | }
| |
| − | | |
| − | return results;
| |
| − | }
| |
| − | | |
| − | /**
| |
| − | * Calculates the (squared euclidean) distance between two points
| |
| − | */
| |
| − | private static final double sqrPointDist(double[] p1, double[] p2, double[] weights) {
| |
| − | double d = 0;
| |
| − | | |
| − | for (int i=0; i<p1.length; i++) {
| |
| − | double diff = (p1[i] - p2[i]) * weights[i];
| |
| − | if (!Double.isNaN(diff)) {
| |
| − | d += diff * diff;
| |
| − | }
| |
| − | }
| |
| − | | |
| − | return d;
| |
| − | }
| |
| − | | |
| − | /**
| |
| − | * Calculates the closest (squared euclidean) distance between in a point and a bounding region
| |
| − | */
| |
| − | private static final double sqrPointRegionDist(double[] point, double[] min, double[] max, double[] weights) {
| |
| − | double d = 0;
| |
| − | | |
| − | for (int i=0; i<point.length; i++) {
| |
| − | double diff = 0;
| |
| − | if (point[i] > max[i]) {
| |
| − | diff = (point[i] - max[i]) * weights[i];
| |
| − | } else if (point[i] < min[i]) {
| |
| − | diff = (point[i] - min[i]) * weights[i];
| |
| − | }
| |
| − | | |
| − | if (!Double.isNaN(diff)) {
| |
| − | d += diff * diff;
| |
| − | }
| |
| − | }
| |
| − | | |
| − | return d;
| |
| − | }
| |
| − | | |
| − | /**
| |
| − | * Class for tracking up to 'size' closest values
| |
| − | */
| |
| − | private static class ResultHeap {
| |
| − | private final Object[] data;
| |
| − | private final double[] distance;
| |
| − | private final int size;
| |
| − | private int values;
| |
| − | | |
| − | public ResultHeap(int size) {
| |
| − | this.data = new Object[size+1];
| |
| − | this.distance = new double[size+1];
| |
| − | this.size = size;
| |
| − | this.values = 0;
| |
| − | }
| |
| − | | |
| − | public void addValue(double dist, Object value) {
| |
| − | if (values == size && dist >= distance[0]) {
| |
| − | return;
| |
| − | }
| |
| − | | |
| − | // Insert value
| |
| − | data[values] = value;
| |
| − | distance[values] = dist;
| |
| − | values++;
| |
| − | | |
| − | // Up-Heapify
| |
| − | for (int c = values-1, p = (c-1)/2; c != 0 && distance[c] > distance[p]; c = p, p = (c-1)/2) {
| |
| − | Object pData = data[p];
| |
| − | double pDist = distance[p];
| |
| − | data[p] = data[c];
| |
| − | distance[p] = distance[c];
| |
| − | data[c] = pData;
| |
| − | distance[c] = pDist;
| |
| − | }
| |
| − | | |
| − | // If too big, remove the highest value
| |
| − | if (values > size) {
| |
| − | // Move the last entry to the top
| |
| − | values--;
| |
| − | data[0] = data[values];
| |
| − | distance[0] = distance[values];
| |
| − | | |
| − | // Down-Heapify
| |
| − | for (int p = 0, c = 1; c < values; p = c,c = p*2+1) {
| |
| − | if (c+1 < values && distance[c] < distance[c+1]) {
| |
| − | c++;
| |
| − | }
| |
| − | if (distance[p] < distance[c]) {
| |
| − | // Swap the points
| |
| − | Object pData = data[p];
| |
| − | double pDist = distance[p];
| |
| − | data[p] = data[c];
| |
| − | distance[p] = distance[c];
| |
| − | data[c] = pData;
| |
| − | distance[c] = pDist;
| |
| − | }
| |
| − | else {
| |
| − | break;
| |
| − | }
| |
| − | }
| |
| − | }
| |
| − | }
| |
| − | | |
| − | public double getMaxDist() {
| |
| − | if (values < size) {
| |
| − | return Double.POSITIVE_INFINITY;
| |
| − | }
| |
| − | return distance[0];
| |
| − | }
| |
| − | | |
| − | public Object[] getData() {
| |
| − | return data;
| |
| − | }
| |
| − | | |
| − | public double[] getDistances() {
| |
| − | return distance;
| |
| − | }
| |
| − | }
| |
| − | }
| |
| − | | |
| − | </pre></code>
| |