Difference between revisions of "User:Rednaxela/kD-Tree"
Jump to navigation
Jump to search
(add licence (simplified zlib-like licence)) |
(Use a heap, it's sliiiiightly faster) |
||
Line 1: | Line 1: | ||
− | A nice efficent | + | A nice efficent small kD-Tree. It's quite fast... Feel free to use |
<code><pre> | <code><pre> | ||
Line 22: | Line 22: | ||
*/ | */ | ||
− | package ags.utils. | + | package ags.utils.newtree2; |
import java.util.ArrayList; | import java.util.ArrayList; | ||
Line 123: | Line 123: | ||
* Add a point and associated value to the tree | * Add a point and associated value to the tree | ||
*/ | */ | ||
− | public static <T> void addPoint(KdTree<T> tree, double[] location, T value) { | + | public static <T> void addPoint(KdTree<T> tree, double[] location, T |
+ | value) { | ||
KdTree<T> cursor = tree; | KdTree<T> cursor = tree; | ||
− | while (cursor.locations == null || cursor.locationCount >= cursor.locations.length) { | + | while (cursor.locations == null || cursor.locationCount >= |
+ | cursor.locations.length) { | ||
if (cursor.locations != null) { | if (cursor.locations != null) { | ||
cursor.splitDimension = cursor.findWidestAxis(); | cursor.splitDimension = cursor.findWidestAxis(); | ||
− | cursor.splitValue = (cursor.minLimit[cursor.splitDimension] + cursor.maxLimit[cursor.splitDimension]) * 0.5; | + | cursor.splitValue = (cursor.minLimit[cursor.splitDimension] + |
+ | cursor.maxLimit[cursor.splitDimension]) * 0.5; | ||
// Don't split node if it has no width in any axis. Double the bucket size instead | // Don't split node if it has no width in any axis. Double the bucket size instead | ||
− | if ((cursor.minLimit[cursor.splitDimension] - cursor.maxLimit[cursor.splitDimension]) == 0) { | + | if ((cursor.minLimit[cursor.splitDimension] - |
− | cursor.locations = Arrays.copyOf(cursor.locations, cursor.locations.length * 2); | + | cursor.maxLimit[cursor.splitDimension]) == 0) { |
+ | cursor.locations = Arrays.copyOf(cursor.locations, | ||
+ | cursor.locations.length * 2); | ||
break; | break; | ||
} | } | ||
Line 203: | Line 208: | ||
/** | /** | ||
− | * Calculates the nearest 'count' points to 'location', with an arbitrary weighting on dimensions | + | * Calculates the nearest 'count' points to 'location', with an |
+ | arbitrary weighting on dimensions | ||
*/ | */ | ||
− | public static <T> List<Entry<T>> nearestNeighbor(KdTree<T> tree, double[] location, int count, double[] weights) { | + | public static <T> List<Entry<T>> nearestNeighbor(KdTree<T> tree, |
+ | double[] location, int count, double[] weights) { | ||
tree.weights = weights; | tree.weights = weights; | ||
return nearestNeighbor(tree, location, count); | return nearestNeighbor(tree, location, count); | ||
Line 213: | Line 220: | ||
* Calculates the nearest 'count' points to 'location' | * Calculates the nearest 'count' points to 'location' | ||
*/ | */ | ||
− | public static <T> List<Entry<T>> nearestNeighbor(KdTree<T> tree, double[] location, int count) { | + | public static <T> List<Entry<T>> nearestNeighbor(KdTree<T> tree, |
+ | double[] location, int count) { | ||
KdTree<T> cursor = tree; | KdTree<T> cursor = tree; | ||
Status status = Status.NONE; | Status status = Status.NONE; | ||
Line 219: | Line 227: | ||
Stack<Status> statusStack = new Stack<Status>(); | Stack<Status> statusStack = new Stack<Status>(); | ||
double range = Double.POSITIVE_INFINITY; | double range = Double.POSITIVE_INFINITY; | ||
− | + | ResultHeap resultHeap = new ResultHeap(count); | |
do { | do { | ||
Line 232: | Line 240: | ||
// At a leaf. Use the data. | // At a leaf. Use the data. | ||
for (int i=0; i<cursor.locationCount; i++) { | for (int i=0; i<cursor.locationCount; i++) { | ||
− | double dist = sqrPointDist(cursor.locations[i], location, tree.weights); | + | double dist = sqrPointDist(cursor.locations[i], location, |
− | + | tree.weights); | |
+ | resultHeap.addValue(dist, cursor.locations[i]); | ||
} | } | ||
− | range = | + | range = resultHeap.getMaxDist(); |
if (stack.empty()) { | if (stack.empty()) { | ||
Line 273: | Line 282: | ||
// Check if it's worth descending. Assume it is if it's sibling has not been visited yet. | // Check if it's worth descending. Assume it is if it's sibling has not been visited yet. | ||
if (status == Status.ALLVISITED) { | if (status == Status.ALLVISITED) { | ||
− | if (nextCursor.locationCount == 0 || sqrPointRegionDist(location, nextCursor.minLimit, nextCursor.maxLimit, tree.weights) > range) { | + | if (nextCursor.locationCount == 0 || sqrPointRegionDist(location, |
+ | nextCursor.minLimit, nextCursor.maxLimit, tree.weights) > range) { | ||
continue; | continue; | ||
} | } | ||
Line 286: | Line 296: | ||
ArrayList<Entry<T>> results = new ArrayList<Entry<T>>(count); | ArrayList<Entry<T>> results = new ArrayList<Entry<T>>(count); | ||
− | Object[] data = | + | Object[] data = resultHeap.getData(); |
− | double[] dist = | + | double[] dist = resultHeap.getDistances(); |
for (int i=0; i<data.length; i++) { | for (int i=0; i<data.length; i++) { | ||
T value = tree.map.get(data[i]); | T value = tree.map.get(data[i]); | ||
Line 299: | Line 309: | ||
* Calculates the (squared euclidean) distance between two points | * Calculates the (squared euclidean) distance between two points | ||
*/ | */ | ||
− | private static final double sqrPointDist(double[] p1, double[] p2, double[] weights) { | + | private static final double sqrPointDist(double[] p1, double[] p2, |
+ | double[] weights) { | ||
double d = 0; | double d = 0; | ||
Line 311: | Line 322: | ||
/** | /** | ||
− | * Calculates the closest (squared euclidean) distance between in a point and a bounding region | + | * Calculates the closest (squared euclidean) distance between in a |
+ | point and a bounding region | ||
*/ | */ | ||
− | private static final double sqrPointRegionDist(double[] point, double[] min, double[] max, double[] weights) { | + | private static final double sqrPointRegionDist(double[] point, double[] |
+ | min, double[] max, double[] weights) { | ||
double d = 0; | double d = 0; | ||
Line 332: | Line 345: | ||
* Class for tracking up to 'size' closest values | * Class for tracking up to 'size' closest values | ||
*/ | */ | ||
− | private static class | + | private static class ResultHeap { |
private final Object[] data; | private final Object[] data; | ||
private final double[] distance; | private final double[] distance; | ||
Line 338: | Line 351: | ||
private int values; | private int values; | ||
− | public | + | public ResultHeap(int size) { |
− | this.data = new Object[size]; | + | this.data = new Object[size+1]; |
− | this.distance = new double[size]; | + | this.distance = new double[size+1]; |
this.size = size; | this.size = size; | ||
this.values = 0; | this.values = 0; | ||
Line 346: | Line 359: | ||
public void addValue(double dist, Object value) { | public void addValue(double dist, Object value) { | ||
− | + | if (values == size && dist >= distance[0]) { | |
− | + | return; | |
− | |||
} | } | ||
− | + | // Insert value | |
− | + | data[values] = value; | |
+ | distance[values] = dist; | ||
+ | values++; | ||
+ | |||
+ | // Up-Heapify | ||
+ | for (int c = values-1, p = (c-1)/2; c != 0 && distance[c] > distance[p]; c = p, p = (c-1)/2) { | ||
+ | Object pData = data[p]; | ||
+ | double pDist = distance[p]; | ||
+ | data[p] = data[c]; | ||
+ | distance[p] = distance[c]; | ||
+ | data[c] = pData; | ||
+ | distance[c] = pDist; | ||
} | } | ||
− | if (values | + | // If too big, remove the highest value |
− | values++; | + | if (values > size) { |
+ | // Move the last entry to the top | ||
+ | values--; | ||
+ | data[0] = data[values]; | ||
+ | distance[0] = distance[values]; | ||
+ | |||
+ | // Down-Heapify | ||
+ | for (int p = 0, c = 1; c < values; p = c,c = p*2+1) { | ||
+ | if (c+1 < values && distance[c] < distance[c+1]) { | ||
+ | c++; | ||
+ | } | ||
+ | if (distance[p] < distance[c]) { | ||
+ | // Swap the points | ||
+ | Object pData = data[p]; | ||
+ | double pDist = distance[p]; | ||
+ | data[p] = data[c]; | ||
+ | distance[p] = distance[c]; | ||
+ | data[c] = pData; | ||
+ | distance[c] = pDist; | ||
+ | } | ||
+ | else { | ||
+ | break; | ||
+ | } | ||
+ | } | ||
} | } | ||
− | |||
− | |||
− | |||
− | |||
− | |||
} | } | ||
Line 369: | Line 410: | ||
return Double.POSITIVE_INFINITY; | return Double.POSITIVE_INFINITY; | ||
} | } | ||
− | return distance[ | + | return distance[0]; |
} | } | ||
public Object[] getData() { | public Object[] getData() { | ||
− | return | + | return data; |
} | } | ||
public double[] getDistances() { | public double[] getDistances() { | ||
− | return | + | return distance; |
} | } | ||
} | } | ||
} | } | ||
</pre></code> | </pre></code> |
Revision as of 03:01, 25 August 2009
A nice efficent small kD-Tree. It's quite fast... Feel free to use
/**
* Copyright 2009 Rednaxela
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
*
* 2. This notice may not be removed or altered from any source
* distribution.
*/
package ags.utils.newtree2;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Stack;
/**
* An efficent well-optimized kd-tree
*
* @author Rednaxela
*/
public class KdTree<T> {
// Static variables
private static final int bucketSize = 32;
// All types
private final int dimensions;
// Root only
private final HashMap<Object, T> map;
private double[] weights;
// Leaf only
private double[][] locations;
private int locationCount;
// Stem only
private KdTree<T> left, right;
private int splitDimension;
private double splitValue;
// Bounds
private double[] minLimit, maxLimit;
/**
* Extends the bounds of this node do include a new location
*/
private final void extendBounds(double[] location) {
if (minLimit == null) {
minLimit = Arrays.copyOf(location, dimensions);
maxLimit = Arrays.copyOf(location, dimensions);
return;
}
for (int i=0; i<dimensions; i++) {
if (minLimit[i] > location[i]) {
minLimit[i] = location[i];
}
if (maxLimit[i] < location[i]) {
maxLimit[i] = location[i];
}
}
}
/**
* Find the widest axis of the bounds of this node
*/
private final int findWidestAxis() {
int widest = 0;
double width = (maxLimit[0] - minLimit[0]);
for (int i = 1; i < dimensions; i++) {
double nwidth = maxLimit[i] - minLimit[i];
if (nwidth > width) {
widest = i;
width = nwidth;
}
}
return widest;
}
// Main constructor
public KdTree(int dimensions) {
this.dimensions = dimensions;
// Init as leaf
this.locations = new double[bucketSize][];
this.locationCount = 0;
// Init as root
this.map = new HashMap<Object, T>();
this.weights = new double[dimensions];
Arrays.fill(this.weights, 1.0);
}
// Child constructor
private KdTree(KdTree<T> parent, boolean right) {
this.dimensions = parent.dimensions;
// Init as leaf
this.locations = new double[bucketSize][];
this.locationCount = 0;
// Init as non-root
this.map = null;
}
/**
* Add a point and associated value to the tree
*/
public static <T> void addPoint(KdTree<T> tree, double[] location, T
value) {
KdTree<T> cursor = tree;
while (cursor.locations == null || cursor.locationCount >=
cursor.locations.length) {
if (cursor.locations != null) {
cursor.splitDimension = cursor.findWidestAxis();
cursor.splitValue = (cursor.minLimit[cursor.splitDimension] +
cursor.maxLimit[cursor.splitDimension]) * 0.5;
// Don't split node if it has no width in any axis. Double the bucket size instead
if ((cursor.minLimit[cursor.splitDimension] -
cursor.maxLimit[cursor.splitDimension]) == 0) {
cursor.locations = Arrays.copyOf(cursor.locations,
cursor.locations.length * 2);
break;
}
// Create child leaves
KdTree<T> left = new KdTree<T>(cursor, false);
KdTree<T> right = new KdTree<T>(cursor, true);
// Move locations into children
for (double[] oldLocation : cursor.locations) {
if (oldLocation[cursor.splitDimension] > cursor.splitValue) {
// Right
right.locations[right.locationCount] = oldLocation;
right.locationCount++;
right.extendBounds(oldLocation);
}
else {
// Left
left.locations[left.locationCount] = oldLocation;
left.locationCount++;
left.extendBounds(oldLocation);
}
}
// Make into stem
cursor.left = left;
cursor.right = right;
cursor.locations = null;
}
cursor.extendBounds(location);
if (location[cursor.splitDimension] > cursor.splitValue) {
cursor = cursor.right;
}
else {
cursor = cursor.left;
}
}
cursor.locations[cursor.locationCount] = location;
cursor.locationCount++;
cursor.extendBounds(location);
tree.map.put(location, value);
}
/**
* Enumeration representing the status of a node during the running
*/
private static enum Status {
NONE,
LEFTVISITED,
RIGHTVISITED,
ALLVISITED
}
/**
* Stores a distance and value to output
*/
public static class Entry<T> {
public final double distance;
public final T value;
private Entry(double distance, T value) {
this.distance = distance;
this.value = value;
}
}
/**
* Calculates the nearest 'count' points to 'location', with an
arbitrary weighting on dimensions
*/
public static <T> List<Entry<T>> nearestNeighbor(KdTree<T> tree,
double[] location, int count, double[] weights) {
tree.weights = weights;
return nearestNeighbor(tree, location, count);
}
/**
* Calculates the nearest 'count' points to 'location'
*/
public static <T> List<Entry<T>> nearestNeighbor(KdTree<T> tree,
double[] location, int count) {
KdTree<T> cursor = tree;
Status status = Status.NONE;
Stack<KdTree<T>> stack = new Stack<KdTree<T>>();
Stack<Status> statusStack = new Stack<Status>();
double range = Double.POSITIVE_INFINITY;
ResultHeap resultHeap = new ResultHeap(count);
do {
if (status == Status.ALLVISITED) {
// At a fully visited part. Move up the tree
cursor = stack.pop();
status = statusStack.pop();
continue;
}
if (status == Status.NONE && cursor.locations != null) {
// At a leaf. Use the data.
for (int i=0; i<cursor.locationCount; i++) {
double dist = sqrPointDist(cursor.locations[i], location,
tree.weights);
resultHeap.addValue(dist, cursor.locations[i]);
}
range = resultHeap.getMaxDist();
if (stack.empty()) {
break;
}
cursor = stack.pop();
status = statusStack.pop();
continue;
}
// Going to descend
KdTree<T> nextCursor = null;
if (status == Status.NONE) {
// At a fresh node, descend the most probably useful direction
if (location[cursor.splitDimension] > cursor.splitValue) {
// Descend right
nextCursor = cursor.right;
status = Status.RIGHTVISITED;
}
else {
// Descend left;
nextCursor = cursor.left;
status = Status.LEFTVISITED;
}
}
else if (status == Status.LEFTVISITED) {
// Left node visited, descend right.
nextCursor = cursor.right;
status = Status.ALLVISITED;
}
else if (status == Status.RIGHTVISITED) {
// Right node visited, descend left.
nextCursor = cursor.left;
status = Status.ALLVISITED;
}
// Check if it's worth descending. Assume it is if it's sibling has not been visited yet.
if (status == Status.ALLVISITED) {
if (nextCursor.locationCount == 0 || sqrPointRegionDist(location,
nextCursor.minLimit, nextCursor.maxLimit, tree.weights) > range) {
continue;
}
}
// Descend down the tree
stack.push(cursor);
statusStack.push(status);
cursor = nextCursor;
status = Status.NONE;
} while (stack.size() > 0 || status != Status.ALLVISITED);
ArrayList<Entry<T>> results = new ArrayList<Entry<T>>(count);
Object[] data = resultHeap.getData();
double[] dist = resultHeap.getDistances();
for (int i=0; i<data.length; i++) {
T value = tree.map.get(data[i]);
results.add(new Entry<T>(dist[i], value));
}
return results;
}
/**
* Calculates the (squared euclidean) distance between two points
*/
private static final double sqrPointDist(double[] p1, double[] p2,
double[] weights) {
double d = 0;
for (int i=0; i<p1.length; i++) {
double diff = (p1[i] - p2[i]) * weights[i];
d += diff * diff;
}
return d;
}
/**
* Calculates the closest (squared euclidean) distance between in a
point and a bounding region
*/
private static final double sqrPointRegionDist(double[] point, double[]
min, double[] max, double[] weights) {
double d = 0;
for (int i=0; i<point.length; i++) {
if (point[i] > max[i]) {
double diff = (point[i] - max[i]) * weights[i];
d += diff * diff;
} else if (point[i] < min[i]) {
double diff = (point[i] - min[i]) * weights[i];
d += diff * diff;
}
}
return d;
}
/**
* Class for tracking up to 'size' closest values
*/
private static class ResultHeap {
private final Object[] data;
private final double[] distance;
private final int size;
private int values;
public ResultHeap(int size) {
this.data = new Object[size+1];
this.distance = new double[size+1];
this.size = size;
this.values = 0;
}
public void addValue(double dist, Object value) {
if (values == size && dist >= distance[0]) {
return;
}
// Insert value
data[values] = value;
distance[values] = dist;
values++;
// Up-Heapify
for (int c = values-1, p = (c-1)/2; c != 0 && distance[c] > distance[p]; c = p, p = (c-1)/2) {
Object pData = data[p];
double pDist = distance[p];
data[p] = data[c];
distance[p] = distance[c];
data[c] = pData;
distance[c] = pDist;
}
// If too big, remove the highest value
if (values > size) {
// Move the last entry to the top
values--;
data[0] = data[values];
distance[0] = distance[values];
// Down-Heapify
for (int p = 0, c = 1; c < values; p = c,c = p*2+1) {
if (c+1 < values && distance[c] < distance[c+1]) {
c++;
}
if (distance[p] < distance[c]) {
// Swap the points
Object pData = data[p];
double pDist = distance[p];
data[p] = data[c];
distance[p] = distance[c];
data[c] = pData;
distance[c] = pDist;
}
else {
break;
}
}
}
}
public double getMaxDist() {
if (values < size) {
return Double.POSITIVE_INFINITY;
}
return distance[0];
}
public Object[] getData() {
return data;
}
public double[] getDistances() {
return distance;
}
}
}