Difference between revisions of "Kohonen Map"
Jump to navigation
Jump to search
(Updated with real actual code (I did test, but it compiles)) |
(Fixed a minor bug for it) |
||
Line 1: | Line 1: | ||
This is about all I can remember on how Kohonen maps work, you may tweak this if you like. Fix any bugs that keeps it from actually working in a robot, etc. | This is about all I can remember on how Kohonen maps work, you may tweak this if you like. Fix any bugs that keeps it from actually working in a robot, etc. | ||
− | |||
− | |||
<pre> | <pre> | ||
Line 38: | Line 36: | ||
for(int i=0; i<dim.length; ++i) | for(int i=0; i<dim.length; ++i) | ||
mapSize *= dim[i]; | mapSize *= dim[i]; | ||
+ | |||
map = new KohonenNode[mapSize]; | map = new KohonenNode[mapSize]; | ||
Line 47: | Line 46: | ||
*/ | */ | ||
int tDim[] = new int[dim.length]; | int tDim[] = new int[dim.length]; | ||
− | for(int i=0; i< | + | for(int i=0; i<mapSize; ++i) { |
map[i] = new KohonenNode(inputL,inputU,outputL,outputU); | map[i] = new KohonenNode(inputL,inputU,outputL,outputU); | ||
Line 143: | Line 142: | ||
range = Math.sqrt(range*range); | range = Math.sqrt(range*range); | ||
input[i] = Math.random()*range+inputL[i]; | input[i] = Math.random()*range+inputL[i]; | ||
− | + | } | |
− | range = outputU[i]-outputL[i]; | + | for(int i=0;i<output.length;++i) { |
+ | double range = outputU[i]-outputL[i]; | ||
range = Math.sqrt(range*range); | range = Math.sqrt(range*range); | ||
output[i] = Math.random()*range+outputL[i]; | output[i] = Math.random()*range+outputL[i]; | ||
Line 196: | Line 196: | ||
} | } | ||
} | } | ||
− | |||
</pre> | </pre> |
Revision as of 12:26, 8 November 2009
This is about all I can remember on how Kohonen maps work, you may tweak this if you like. Fix any bugs that keeps it from actually working in a robot, etc.
package chase.meh; /** * This is a basic stand alone Kohonen map for use in Succubus, this allows me to worry * about Kohonen Map stuff in the Kohonen Map, and robot stuff in the robot. * * @author Chase */ public class KohonenMap { private KohonenNode[] map; private int mapSize; private long time; /** * The dimensions in the dim, are only used with the neighborhood function. The true * dimensionality that makes Kohonen Maps work is the input and output weights.<br><br> * The input weights are used to determine the BMU, while the output weights are unused * @param dim Sets the size of the internal map. Where the length is the number of dimensions and * each index determines the size of that particular dimension. So {8,4} would initialize a 2 * dimensional map, 8 wide, and 4 high. * @param inputL The lower range of the input weights that each node contains. The number of entries * determines the number of input weights. * @param inputU The upper range of the input weights that each node contains. The number of entries * determines the number of input weights. * @param outputL The lower range of the output weights that each node contains. The number of entries * determines the number of output weights. * @param outputU The upper range of the output weights that each node contains. The number of entries * determines the number of output weights. */ public KohonenMap(int[] dim, double[] inputL, double[] inputU, double[] outputL, double[] outputU) { mapSize = 1; for(int i=0; i<dim.length; ++i) mapSize *= dim[i]; map = new KohonenNode[mapSize]; //Logarithms have this thing against zero :) time = 1; /** * Initialize each node. */ int tDim[] = new int[dim.length]; for(int i=0; i<mapSize; ++i) { map[i] = new KohonenNode(inputL,inputU,outputL,outputU); /** !! VERY IMPORTANT !! VERY IMPORTANT !! * Here we are setting up the neighborhood, * so it doesn't need to be calculated later * which makes things much simpler. */ map[i].my_pos = tDim.clone(); ++tDim[0]; for(int j=0;j<dim.length-1;++j) { if(tDim[j] >= dim[j]) { tDim[j+1]++; tDim[j] = 0; } } } } /** * Returns the best matching unit for the given data * @param input Data used to locate the BMU * @return the best matching BMU for this input data */ public KohonenNode getBMU(double input[]) { KohonenNode out = null; double distance = Double.POSITIVE_INFINITY; for(int i=0;i<mapSize;++i) { KohonenNode n = map[i]; double dist = distance(input,n.input); if(dist < distance) { distance = dist; out = n; } } return out; } /** * Updates this KohonenMap with the given data. * @param input The input data that will be updated to the map * @param output The output data that will be updated to the map */ public void update(double input[], double output[]) { KohonenNode bmu = getBMU(input); for(int i=0;i<mapSize;++i) { map[i].update(bmu.my_pos, input, output); } ++time; } /** * Sets the internal time used for weighting the update data by time. * The internal time automatically gets incremented with each update, * calling this is unnecessary. * @param time */ public void setTime(long time) { if(time < 1) time = 1; this.time = time; } /** * This is a KohonenNode, it just contains the data * @author Chase */ public class KohonenNode { /** this is the location of this node in the neighborhood. */ private int[] my_pos; public double[] input; public double[] output; /** * @param inputL The lower range of the input weights that this node contains. The number of entries * determines the number of input weights. * @param inputU The upper range of the input weights that this node contains. The number of entries * determines the number of input weights. * @param outputL The lower range of the output weights that this node contains. The number of entries * determines the number of output weights. * @param outputU The upper range of the output weights that this node contains. The number of entries * determines the number of output weights. */ public KohonenNode(double[] inputL, double[] inputU, double[] outputL, double[] outputU) { input = new double[inputL.length]; output = new double[outputL.length]; /** !! VERY IMPORTANT !! VERY IMPORTANT !! * Randomize the startup data */ for(int i=0;i<input.length;++i) { double range = inputU[i]-inputL[i]; range = Math.sqrt(range*range); input[i] = Math.random()*range+inputL[i]; } for(int i=0;i<output.length;++i) { double range = outputU[i]-outputL[i]; range = Math.sqrt(range*range); output[i] = Math.random()*range+outputL[i]; } } private double weight(double current, double target, double neighborhood, double time) { return current + neighborhood * time * (target - current); } private void update(int[] bmu, double input[], double output[]) { double distance = 1+neighborDistance(my_pos,bmu); double neighborhood = Math.pow(Math.E, -(distance*distance)/2.0); double timeFunc = Math.log(time); /** Beyond this point its benefit is negligible. */ if(neighborhood*timeFunc < 0.0001) return; /** Update the input and output weights */ for(int i=0;i<input.length;++i) { this.input[i] = weight(this.input[i], input[i], neighborhood, timeFunc); } for(int i=0;i<output.length;++i) { this.output[i] = weight(this.output[i], output[i], neighborhood, timeFunc); } } } /** * The weight distance function. */ public static final double distance(double[] p, double[] q) { if(p == null || q == null) return Double.POSITIVE_INFINITY; double k, d = 0; for(int i = 0; i < p.length; i++) { k = p[i] - q[i]; d += k*k; } return d; } /** * The neighborhood distance function. */ public static final double neighborDistance(int[] p, int[] q) { double k, d = 0; for(int i = 0; i < p.length; i++) { k = p[i] - q[i]; d += k*k; } return d; } }