Difference between revisions of "Thread:Talk:Gilgalad/targetingStrategy/Precise MEA/reply (7)"
(Reply to Precise MEA) |
(edit) |
||
Line 1: | Line 1: | ||
True, but I'd say it can be learned away much much quicker than 1 round even, especially when tick-waves are used. | True, but I'd say it can be learned away much much quicker than 1 round even, especially when tick-waves are used. | ||
− | About cropping or scaling, yeah... I'd say the tradeoff comes down to a matter of low-distortion (fewer assumptions) versus fast-learning (reduced segmentation needed). The best choice depends on all sorts of circumstances. With 1) a sufficiently large number of rounds, 2) good wall segmentation, and 3) non-learning opponents, cropping will just about always be better. Conditions #1 and #3 | + | About cropping or scaling, yeah... I'd say the tradeoff comes down to a matter of low-distortion (fewer assumptions) versus fast-learning (reduced segmentation needed). The best choice depends on all sorts of circumstances. With 1) a sufficiently large number of rounds, 2) good wall segmentation, and 3) non-learning opponents, cropping will just about always be better. Conditions #1 and #3 may frequently not be the case though, so yeah. |
What I have been thinking about trying when I get around to actively robocoding again, is including both scaling and cropping, and use both for deciding each shot. Possibly ways to do it would be averaging the probability curve for both, or picking the one that gives the strongest prediction, among other possibilities. | What I have been thinking about trying when I get around to actively robocoding again, is including both scaling and cropping, and use both for deciding each shot. Possibly ways to do it would be averaging the probability curve for both, or picking the one that gives the strongest prediction, among other possibilities. |
Latest revision as of 19:16, 9 February 2012
True, but I'd say it can be learned away much much quicker than 1 round even, especially when tick-waves are used.
About cropping or scaling, yeah... I'd say the tradeoff comes down to a matter of low-distortion (fewer assumptions) versus fast-learning (reduced segmentation needed). The best choice depends on all sorts of circumstances. With 1) a sufficiently large number of rounds, 2) good wall segmentation, and 3) non-learning opponents, cropping will just about always be better. Conditions #1 and #3 may frequently not be the case though, so yeah.
What I have been thinking about trying when I get around to actively robocoding again, is including both scaling and cropping, and use both for deciding each shot. Possibly ways to do it would be averaging the probability curve for both, or picking the one that gives the strongest prediction, among other possibilities.