Difference between revisions of "User:Skilgannon/KDTree"

From Robowiki
Jump to navigation Jump to search
(2 step search, little changes)
m (cleaning, reverse PrioQueue)
Line 1: Line 1:
 
<code><syntaxhighlight>
 
<code><syntaxhighlight>
 
 
/*
 
/*
 
** KDTree.java by Julian Kent
 
** KDTree.java by Julian Kent
Line 9: Line 8:
 
** Example usage is given in the main method, as well as benchmarking code against Rednaxela's Gen2 Tree
 
** Example usage is given in the main method, as well as benchmarking code against Rednaxela's Gen2 Tree
 
*/
 
*/
 
+
 
+
 
package jk.mega;
 
package jk.mega;
 
import java.util.ArrayDeque;
 
import java.util.ArrayDeque;
Line 17: Line 16:
 
//import ags.utils.*;
 
//import ags.utils.*;
 
//import ags.utils.dataStructures.*;
 
//import ags.utils.dataStructures.*;
 
+
 
public class KDTree<T>{
 
public class KDTree<T>{
 
+
 
//use a big bucketSize so that we have less node bounds (for more cache hits) and better splits
 
//use a big bucketSize so that we have less node bounds (for more cache hits) and better splits
 
   private static final int  _bucketSize = 50;
 
   private static final int  _bucketSize = 50;
 
+
 
   private final int _dimensions;
 
   private final int _dimensions;
 
   private int _nodes;   
 
   private int _nodes;   
   private Node root;
+
   private final Node root;
 
+
 
   //prevent GC from having to collect _bucketSize*dimensions*8 bytes each time a leaf splits
 
   //prevent GC from having to collect _bucketSize*dimensions*8 bytes each time a leaf splits
 
   private double[] mem_recycle;
 
   private double[] mem_recycle;
 
+
 
   //the starting values for bounding boxes, for easy access
 
   //the starting values for bounding boxes, for easy access
 
   private final double[] bounds_template;
 
   private final double[] bounds_template;
 
+
 
   //one big self-expanding array to keep all the node bounding boxes so that they stay in cache
 
   //one big self-expanding array to keep all the node bounding boxes so that they stay in cache
 
   // node bounds available at:
 
   // node bounds available at:
 
   //low:  2 * _dimensions * node.index + 2 * dim
 
   //low:  2 * _dimensions * node.index + 2 * dim
 
   //high: 2 * _dimensions * node.index + 2 * dim + 1
 
   //high: 2 * _dimensions * node.index + 2 * dim + 1
   private ContiguousDoubleArrayList nodeMinMaxBounds;
+
   private final ContiguousDoubleArrayList nodeMinMaxBounds;
 
/*
 
/*
 
   public static void main(String[] args){
 
   public static void main(String[] args){
Line 82: Line 81:
 
         }
 
         }
 
         long t3 = System.nanoTime();
 
         long t3 = System.nanoTime();
     
+
 
         long jtn = 0;
 
         long jtn = 0;
 
         long rtn = 0;
 
         long rtn = 0;
 
         long mjtn = 0;
 
         long mjtn = 0;
 
         long mrtn = 0;
 
         long mrtn = 0;
     
+
 
         double dist1 = 0, dist2 = 0;
 
         double dist1 = 0, dist2 = 0;
 
         for(int i = 0; i < testsize; i++){
 
         for(int i = 0; i < testsize; i++){
Line 101: Line 100:
 
             mrtn = Math.max(mrtn,t6 - t5 - (t7 - t6));
 
             mrtn = Math.max(mrtn,t6 - t5 - (t7 - t6));
 
         }
 
         }
     
+
 
         System.out.println("Accuracy: " + (Math.abs(dist1-dist2) < 1e-10?"100%":"BROKEN!!!"));
 
         System.out.println("Accuracy: " + (Math.abs(dist1-dist2) < 1e-10?"100%":"BROKEN!!!"));
 
         if(Math.abs(dist1-dist2) > 1e-10){
 
         if(Math.abs(dist1-dist2) > 1e-10){
Line 109: Line 108:
 
         long rts = t3 - t2;
 
         long rts = t3 - t2;
 
         System.out.println("Iteration:      " + (r+1) + "/" + iterations);
 
         System.out.println("Iteration:      " + (r+1) + "/" + iterations);
     
+
 
         System.out.println("This tree add avg:  " + jts/size + " ns");
 
         System.out.println("This tree add avg:  " + jts/size + " ns");
 
         System.out.println("Reds tree add avg:  " + rts/size + " ns");
 
         System.out.println("Reds tree add avg:  " + rts/size + " ns");
     
+
 
         System.out.println("This tree knn avg:  " + jtn/testsize + " ns");
 
         System.out.println("This tree knn avg:  " + jtn/testsize + " ns");
 
         System.out.println("Reds tree knn avg:  " + rtn/testsize + " ns");
 
         System.out.println("Reds tree knn avg:  " + rtn/testsize + " ns");
Line 121: Line 120:
 
   }
 
   }
 
   // */
 
   // */
 
+
 
   public KDTree(int dimensions){
 
   public KDTree(int dimensions){
 
       _dimensions = dimensions;
 
       _dimensions = dimensions;
Line 161: Line 160:
 
       return root.entries;
 
       return root.entries;
 
   }
 
   }
 
+
 
+
 
   public ArrayList<SearchResult<T>> nearestNeighbours(double[] searchLocation, int K){
 
   public ArrayList<SearchResult<T>> nearestNeighbours(double[] searchLocation, int K){
 
       ArrayDeque<Node> stack = new ArrayDeque<Node>(50);
 
       ArrayDeque<Node> stack = new ArrayDeque<Node>(50);
Line 171: Line 170:
 
       int added = 0;
 
       int added = 0;
 
       while(added < K )
 
       while(added < K )
         added += stack.pop().search(searchLocation,stack,results);
+
         added += stack.pollFirst().search(searchLocation,stack,results);
           
+
 
      double bestDist = -results.peekPrio();
 
 
       while(stack.size() > 0 ){
 
       while(stack.size() > 0 ){
         Node searchNode = stack.poll();
+
         Node searchNode = stack.pollFirst();
         if(bestDist >= searchNode.pointRectDist(searchLocation)){
+
         if(results.peekPrio() > searchNode.pointRectDist(searchLocation))
 
             searchNode.search(searchLocation,stack,results);
 
             searchNode.search(searchLocation,stack,results);
            bestDist = -results.peekPrio();
 
        }
 
 
       }
 
       }
     
+
 
 
       ArrayList<SearchResult<T>> returnResults = new ArrayList<SearchResult<T>>(K);
 
       ArrayList<SearchResult<T>> returnResults = new ArrayList<SearchResult<T>>(K);
 
    
 
    
       for(int i = K; i-- > 0;){//Reverse (furthest first, like Rednaxela Gen2)
+
       for(int i = 0; i < K; i++){//forward (closest first)
         SearchResult s = new SearchResult(-results.priorities[i],results.elements[i]);
+
         SearchResult s = new SearchResult(results.priorities[i],results.elements[i]);
 
         returnResults.add(s);
 
         returnResults.add(s);
 
       }
 
       }
 
       return returnResults;
 
       return returnResults;
 
   }
 
   }
 
+
 
+
     //NB! This Priority Queue keeps things with the HIGHEST priority.  
+
     //NB! This Priority Queue keeps things with the LOWEST priority.  
//If you want lowest priority items kept, negate your values
+
//If you want highest priority items kept, negate your values
 
   private static class PrioQueue<S>{
 
   private static class PrioQueue<S>{
 
    
 
    
Line 204: Line 200:
 
         elements = new Object[size];
 
         elements = new Object[size];
 
         priorities = new double[size];
 
         priorities = new double[size];
         Arrays.fill(priorities,Double.NEGATIVE_INFINITY);
+
         Arrays.fill(priorities,Double.POSITIVE_INFINITY);
 
         if(prefill){
 
         if(prefill){
             minPrio = Double.NEGATIVE_INFINITY;
+
             minPrio = Double.POSITIVE_INFINITY;
 
             this.size = size;
 
             this.size = size;
 
         }
 
         }
Line 212: Line 208:
 
       //uses O(log(n)) comparisons and one big shift of size O(N)
 
       //uses O(log(n)) comparisons and one big shift of size O(N)
 
       //and is MUCH simpler than a heap --> faster on small sets, faster JIT
 
       //and is MUCH simpler than a heap --> faster on small sets, faster JIT
       
+
 
 
       void addNoGrow(S value, double priority){
 
       void addNoGrow(S value, double priority){
 
         int index = searchFor(priority);
 
         int index = searchFor(priority);
Line 221: Line 217:
 
         elements[index]=value;
 
         elements[index]=value;
 
         priorities[index]=priority;
 
         priorities[index]=priority;
           
+
     
 
         minPrio = priorities[size-1];
 
         minPrio = priorities[size-1];
 
       }
 
       }
Line 231: Line 227:
 
             int index = (i+j)>>>1;
 
             int index = (i+j)>>>1;
 
          
 
          
             if( priorities[index] > priority)
+
             if( priorities[index] < priority)
 
               j = index+1;
 
               j = index+1;
 
             else  
 
             else  
Line 259: Line 255:
 
             System.out.println("Expanding PrioQueue to " + elements.length);
 
             System.out.println("Expanding PrioQueue to " + elements.length);
 
         }
 
         }
     
+
 
 
         elements[size-1] = value;
 
         elements[size-1] = value;
 
         priorities[size-1] = priority;
 
         priorities[size-1] = priority;
 
         minPrio = priority;
 
         minPrio = priority;
       
+
 
 
       }
 
       }
     
+
 
 
       S pop(){
 
       S pop(){
 
         Object value = elements[--size];
 
         Object value = elements[--size];
Line 280: Line 276:
 
     //  */
 
     //  */
 
   }
 
   }
 
+
 
+
 
   public static class SearchResult<S>{
 
   public static class SearchResult<S>{
 
       public double distance;
 
       public double distance;
Line 290: Line 286:
 
       }
 
       }
 
   }
 
   }
 
+
 
   private class Node {
 
   private class Node {
 
    
 
    
Line 296: Line 292:
 
   // - if trees weren't so unbalanced might be better to use an implicit heap?
 
   // - if trees weren't so unbalanced might be better to use an implicit heap?
 
       int index;
 
       int index;
     
+
 
 
   //keep track of size of subtree
 
   //keep track of size of subtree
 
       int entries;
 
       int entries;
Line 303: Line 299:
 
       ContiguousDoubleArrayList pointLocations ;
 
       ContiguousDoubleArrayList pointLocations ;
 
       ArrayList<T> pointPayloads = new ArrayList<T>(_bucketSize);
 
       ArrayList<T> pointPayloads = new ArrayList<T>(_bucketSize);
     
+
 
 
   //stem
 
   //stem
 
       Node less, more;
 
       Node less, more;
Line 318: Line 314:
 
       }
 
       }
 
       private final double pointRectDist(double[] location){
 
       private final double pointRectDist(double[] location){
         int offset = (2*_dimensions)*(index+1)-2;
+
         int offset = (2*_dimensions)*(index);
 
         double distance=0;
 
         double distance=0;
 
         double[] array = nodeMinMaxBounds.array;
 
         double[] array = nodeMinMaxBounds.array;
         for(int i = _dimensions; i-- > 0; offset -= 2){
+
         for(int i = 0; i < location.length; i++,offset += 2){
 
          
 
          
 
             double diff = 0;
 
             double diff = 0;
Line 333: Line 329:
 
                   diff = lv-bv;
 
                   diff = lv-bv;
 
             }
 
             }
             distance += sqr(diff);
+
             distance += (diff*diff);
 
         }
 
         }
 
         return distance;
 
         return distance;
Line 341: Line 337:
 
         double distance = 0;
 
         double distance = 0;
 
         int offset = (index+1)*_dimensions;
 
         int offset = (index+1)*_dimensions;
         for(int i = _dimensions; i-- > 0;)
+
       
             distance += sqr(arr[--offset] - location[i]);
+
         for(int i = _dimensions; i-- > 0 ;){
 +
            double d;
 +
             distance += (d = arr[--offset] - location[i])*d;
 +
        }
 
         return distance;
 
         return distance;
 
       }
 
       }
 +
 
 
       //returns number of points added to results
 
       //returns number of points added to results
 
       private int search(double[] searchLocation, ArrayDeque<Node> stack, PrioQueue<T> results){
 
       private int search(double[] searchLocation, ArrayDeque<Node> stack, PrioQueue<T> results){
     
 
 
         if(pointLocations == null){
 
         if(pointLocations == null){
 +
           
 
             if(searchLocation[splitDim] < splitVal){
 
             if(searchLocation[splitDim] < splitVal){
               stack.push(more);
+
               stack.addFirst(more);
               stack.push(less);//less will be popped first
+
               stack.addFirst(less);//less will be popped first
 
             }
 
             }
 
             else{
 
             else{
               stack.push(less);
+
               stack.addFirst(less);
               stack.push(more);//more will be popped first
+
               stack.addFirst(more);//more will be popped first
 
             }
 
             }
            return 0;
 
 
         }
 
         }
 
         else{
 
         else{
            double minD = results.peekPrio();
 
 
             int updated = 0;
 
             int updated = 0;
 
             for(int j = entries; j-- > 0;){
 
             for(int j = entries; j-- > 0;){
               double neg_distance = -pointDist(searchLocation,j);
+
               double distance = pointDist(searchLocation,j);
               if(minD < neg_distance){
+
               if(results.peekPrio() > distance){
                  results.addNoGrow(pointPayloads.get(j),neg_distance);
 
                  minD = results.peekPrio();
 
 
                   updated++;
 
                   updated++;
 +
                  results.addNoGrow(pointPayloads.get(j),distance);
 
               }
 
               }
 
             }
 
             }
 
             return updated;
 
             return updated;
 
         }
 
         }
 +
        return 0;
 
       }
 
       }
 +
 
 
       private void expandBounds(double[] location){
 
       private void expandBounds(double[] location){
 
         entries++;
 
         entries++;
Line 389: Line 388:
 
       private void split(){
 
       private void split(){
 
         int offset = index*2*_dimensions;
 
         int offset = index*2*_dimensions;
       
+
     
 
         double diff = 0;
 
         double diff = 0;
 
         for(int i = 0; i < _dimensions; i++){
 
         for(int i = 0; i < _dimensions; i++){
Line 398: Line 397:
 
               for(int j = 0; j < entries; j++)
 
               for(int j = 0; j < entries; j++)
 
                   mean += pointLocations.array[i+_dimensions*j];
 
                   mean += pointLocations.array[i+_dimensions*j];
           
+
           
 
               mean = mean/entries;
 
               mean = mean/entries;
 
               double varianceSum = 0;
 
               double varianceSum = 0;
Line 425: Line 424:
 
         less = new Node(mem_recycle);//recycle that memory!
 
         less = new Node(mem_recycle);//recycle that memory!
 
         more = new Node();
 
         more = new Node();
       
+
     
 
         //reduce garbage by factor of _bucketSize by recycling this array
 
         //reduce garbage by factor of _bucketSize by recycling this array
 
         double[] pointLocation = new double[_dimensions];
 
         double[] pointLocation = new double[_dimensions];
Line 445: Line 444:
 
             less = null;
 
             less = null;
 
             more = null;
 
             more = null;
 +
            _nodes -= 2;//recall that bounds memory
 
         }
 
         }
 
         else{
 
         else{
Line 459: Line 459:
 
    
 
    
 
   }
 
   }
 
+
 
+
 
   private static class ContiguousDoubleArrayList{
 
   private static class ContiguousDoubleArrayList{
 
       double[] array;
 
       double[] array;
Line 478: Line 478:
 
             //System.out.println("Doubling!");
 
             //System.out.println("Doubling!");
 
         }
 
         }
       
+
     
 
         System.arraycopy(da,0,array,size,da.length);
 
         System.arraycopy(da,0,array,size,da.length);
 
         size += da.length;
 
         size += da.length;
Line 484: Line 484:
 
       }
 
       }
 
   }
 
   }
 
+
 
   private static final double sqr(double d){
 
   private static final double sqr(double d){
 
       return d*d;}
 
       return d*d;}
 
+
 
}
 
}
  
 
</syntaxhighlight></code>
 
</syntaxhighlight></code>

Revision as of 16:49, 20 July 2013

/*
** KDTree.java by Julian Kent
** Licenced under the  Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
** See full licencing details here: http://creativecommons.org/licenses/by-nc-sa/3.0/
** For additional licencing rights please contact jkflying@gmail.com
**
** Example usage is given in the main method, as well as benchmarking code against Rednaxela's Gen2 Tree
*/
 
 
package jk.mega;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
//import ags.utils.*;
//import ags.utils.dataStructures.*;
 
public class KDTree<T>{
 
//use a big bucketSize so that we have less node bounds (for more cache hits) and better splits
   private static final int  _bucketSize = 50;
 
   private final int _dimensions;
   private int _nodes;   
   private final Node root;
 
   //prevent GC from having to collect _bucketSize*dimensions*8 bytes each time a leaf splits
   private double[] mem_recycle;
 
   //the starting values for bounding boxes, for easy access
   private final double[] bounds_template;
 
   //one big self-expanding array to keep all the node bounding boxes so that they stay in cache
   // node bounds available at:
   //low:  2 * _dimensions * node.index + 2 * dim
   //high: 2 * _dimensions * node.index + 2 * dim + 1
   private final ContiguousDoubleArrayList nodeMinMaxBounds;
/*
   public static void main(String[] args){
      int dims = 1;
      int size = 2000000;
      int testsize = 1;
      int k = 40;
      int iterations = 1;
      System.out.println(
         "Config:\n"
         + "No JIT Warmup\n"
         + "Tested on random data.\n" 
         + "Training and testing points shared across iterations.\n"
         + "Searches interleaved.");
      System.out.println("Num points:     " + size);
      System.out.println("Num searches:   " + testsize);
      System.out.println("Dimensions:     " + dims);
      System.out.println("Num Neighbours: " + k);
      System.out.println();
      ArrayList<double[]> locs = new ArrayList<double[]>(size);
      for(int i = 0; i < size; i++){
         double[] loc = new double[dims];
         for(int j = 0; j < dims; j++)
            loc[j] = Math.random();
         locs.add(loc);
      }
      ArrayList<double[]> testlocs = new ArrayList<double[]>(testsize);
      for(int i = 0; i < testsize; i++){
         double[] loc = new double[dims];
         for(int j = 0; j < dims; j++)
            loc[j] = Math.random();
         testlocs.add(loc);
      }
      for(int r = 0; r < iterations; r++){
         long t1 = System.nanoTime();
         KDTree<double[]> t = new KDTree<double[]>(dims);// This tree
         for(int i = 0; i < size; i++){
            t.addPoint(locs.get(i),locs.get(i));
         }
         long t2 = System.nanoTime();
         KdTree<double[]> rt = new KdTree.Euclidean<double[]>(dims,null); //Rednaxela Gen2
         for(int i = 0; i < size; i++){
            rt.addPoint(locs.get(i),locs.get(i));
         }
         long t3 = System.nanoTime();
 
         long jtn = 0;
         long rtn = 0;
         long mjtn = 0;
         long mrtn = 0;
 
         double dist1 = 0, dist2 = 0;
         for(int i = 0; i < testsize; i++){
            long t4 = System.nanoTime();
            dist1 += t.nearestNeighbours(testlocs.get(i),k).iterator().next().distance;
            long t5 = System.nanoTime();
            dist2 += rt.nearestNeighbor(testlocs.get(i),k,true).iterator().next().distance;
            long t6 = System.nanoTime();
            long t7 = System.nanoTime();
            jtn += t5 - t4 - (t7 - t6);
            rtn += t6 - t5 - (t7 - t6); 
            mjtn = Math.max(mjtn,t5 - t4 - (t7 - t6));
            mrtn = Math.max(mrtn,t6 - t5 - (t7 - t6));
         }
 
         System.out.println("Accuracy: " + (Math.abs(dist1-dist2) < 1e-10?"100%":"BROKEN!!!"));
         if(Math.abs(dist1-dist2) > 1e-10){
            System.out.println("dist1: " + dist1 + "    dist2: " + dist2);
         }
         long jts = t2 - t1;
         long rts = t3 - t2;
         System.out.println("Iteration:      " + (r+1) + "/" + iterations);
 
         System.out.println("This tree add avg:  " + jts/size + " ns");
         System.out.println("Reds tree add avg:  " + rts/size + " ns");
 
         System.out.println("This tree knn avg:  " + jtn/testsize + " ns");
         System.out.println("Reds tree knn avg:  " + rtn/testsize + " ns");
         System.out.println("This tree knn max:  " + mjtn + " ns");
         System.out.println("Reds tree knn max:  " + mrtn + " ns");
         System.out.println();
      }
   }
   // */
 
   public KDTree(int dimensions){
      _dimensions = dimensions;
   
   //initialise this so that it ends up in 'old' memory
      nodeMinMaxBounds = new ContiguousDoubleArrayList(512 * 1024 / 8 + 2*_dimensions);
      mem_recycle = new double[_bucketSize*dimensions];
   
      bounds_template = new double[2*_dimensions];
      Arrays.fill(bounds_template,Double.NEGATIVE_INFINITY);
      for(int i = 0, max = 2*_dimensions; i < max; i+=2)
         bounds_template[i] = Double.POSITIVE_INFINITY;
   
   //and.... start!
      root = new Node();
   }
   public int nodes(){
      return _nodes;
   }
   public int addPoint(double[] location, T payload){
   
      Node addNode = root;
   //Do a Depth First Search to find the Node where 'location' should be stored
      while(addNode.pointLocations == null){
         addNode.expandBounds(location);
         if(location[addNode.splitDim] < addNode.splitVal)
            addNode = addNode.less;
         else
            addNode = addNode.more;
      }
      addNode.expandBounds(location);
   
      int nodeSize = addNode.add(location,payload);
   
      if(nodeSize % _bucketSize == 0)
      //try splitting again once every time the node passes a _bucketSize multiple
         addNode.split();
   
      return root.entries;
   }
 
 
   public ArrayList<SearchResult<T>> nearestNeighbours(double[] searchLocation, int K){
      ArrayDeque<Node> stack = new ArrayDeque<Node>(50);
      PrioQueue<T> results = new PrioQueue<T>(K,true);
   
      stack.push(root);
   
      int added = 0;
      while(added < K )
         added += stack.pollFirst().search(searchLocation,stack,results);
   
      while(stack.size() > 0 ){
         Node searchNode = stack.pollFirst();
         if(results.peekPrio() > searchNode.pointRectDist(searchLocation))
            searchNode.search(searchLocation,stack,results);
      }
   
      ArrayList<SearchResult<T>> returnResults = new ArrayList<SearchResult<T>>(K);
   
      for(int i = 0; i < K; i++){//forward (closest first)
         SearchResult s = new SearchResult(results.priorities[i],results.elements[i]);
         returnResults.add(s);
      }
      return returnResults;
   }
 
 
     //NB! This Priority Queue keeps things with the LOWEST priority. 
//If you want highest priority items kept, negate your values
   private static class PrioQueue<S>{
   
      Object[] elements;
      double[] priorities;
      private double minPrio;
      private int size;
   
      PrioQueue(int size, boolean prefill){
         elements = new Object[size];
         priorities = new double[size];
         Arrays.fill(priorities,Double.POSITIVE_INFINITY);
         if(prefill){
            minPrio = Double.POSITIVE_INFINITY;
            this.size = size;
         }
      }
       //uses O(log(n)) comparisons and one big shift of size O(N)
       //and is MUCH simpler than a heap --> faster on small sets, faster JIT
   
      void addNoGrow(S value, double priority){
         int index = searchFor(priority);
         int nextIndex = index + 1;
         int length = size - index - 1;//remove dependancy on nextIndex
         System.arraycopy(elements,index,elements,nextIndex,length);
         System.arraycopy(priorities,index,priorities,nextIndex,length);
         elements[index]=value;
         priorities[index]=priority;
      
         minPrio = priorities[size-1];
      }
   
      int searchFor(double priority){
         int i = size-1;
         int j = 0;   
         while(i>=j){
            int index = (i+j)>>>1;
         
            if( priorities[index] < priority)
               j = index+1;
            else 
               i = index-1;
         }
         return j;
      }
      double peekPrio(){
         return minPrio;
      }
      /*
       //Methods for using it as a priority stack - leave them out for now
      void push(S value, double priority){
         if(++size > elements.length){
            elements = Arrays.copyOf(elements,size*2);
            priorities = Arrays.copyOf(priorities,size*2);
            Arrays.fill(priorities,size,size*2,Double.NEGATIVE_INFINITY);
            System.out.println("Expanding PrioQueue to " + elements.length);
         }
         addNoGrow(value,priority);
      }
      void pushTop(S value, double priority){
         if(++size > elements.length){
            elements = Arrays.copyOf(elements,size*2);
            priorities = Arrays.copyOf(priorities,size*2);
            Arrays.fill(priorities,size,size*2,Double.NEGATIVE_INFINITY);
            System.out.println("Expanding PrioQueue to " + elements.length);
         }
   
         elements[size-1] = value;
         priorities[size-1] = priority;
         minPrio = priority;
   
      }
   
      S pop(){
         Object value = elements[--size];
         priorities[size] = Double.NEGATIVE_INFINITY;
         if(size == 0)
            minPrio = Double.NEGATIVE_INFINITY;
         else
            minPrio = priorities[size-1];
         return (S)value;
      }
      int size(){
         return size-min;
      }
     //   */
   }
 
 
   public static class SearchResult<S>{
      public double distance;
      public S payload;
      SearchResult(double dist, S load){
         distance = dist;
         payload = load;
      }
   }
 
   private class Node {
   
   //for accessing bounding box data 
   // - if trees weren't so unbalanced might be better to use an implicit heap?
      int index;
   
   //keep track of size of subtree
      int entries;
   
   //leaf
      ContiguousDoubleArrayList pointLocations ;
      ArrayList<T> pointPayloads = new ArrayList<T>(_bucketSize);
   
   //stem
      Node less, more;
      int splitDim;
      double splitVal;
   
      private Node(){
         this(new double[_bucketSize*_dimensions]);
      }
      private Node(double[] pointMemory){
         pointLocations = new ContiguousDoubleArrayList(pointMemory);
         index = _nodes++;
         nodeMinMaxBounds.add(bounds_template);
      }
      private final double pointRectDist(double[] location){
         int offset = (2*_dimensions)*(index);
         double distance=0;
         double[] array = nodeMinMaxBounds.array;
         for(int i = 0; i < location.length; i++,offset += 2){
         
            double diff = 0;
            double bv = array[offset];
            double lv = location[i];
            if(bv > lv)
               diff = bv-lv;
            else{
               bv=array[offset+1];
               if(lv>bv)
                  diff = lv-bv;
            }
            distance += (diff*diff);
         }
         return distance;
      }
      private final double pointDist(double[] location, int index){
         double[] arr = pointLocations.array;
         double distance = 0;
         int offset = (index+1)*_dimensions;
         
         for(int i = _dimensions; i-- > 0 ;){
            double d;
            distance += (d = arr[--offset] - location[i])*d;
         }
         return distance;
      }
   
      //returns number of points added to results
      private int search(double[] searchLocation, ArrayDeque<Node> stack, PrioQueue<T> results){
         if(pointLocations == null){
            
            if(searchLocation[splitDim] < splitVal){
               stack.addFirst(more);
               stack.addFirst(less);//less will be popped first
            }
            else{
               stack.addFirst(less);
               stack.addFirst(more);//more will be popped first
            }
         }
         else{
            int updated = 0;
            for(int j = entries; j-- > 0;){
               double distance = pointDist(searchLocation,j);
               if(results.peekPrio() > distance){
                  updated++;
                  results.addNoGrow(pointPayloads.get(j),distance);
               }
            }
            return updated;
         }
         return 0;
      }
   
      private void expandBounds(double[] location){
         entries++;
         int mio = index*2*_dimensions;
         for(int i = 0; i < _dimensions;i++){
            nodeMinMaxBounds.array[mio] = Math.min(nodeMinMaxBounds.array[mio++],location[i]);
            nodeMinMaxBounds.array[mio] = Math.max(nodeMinMaxBounds.array[mio++],location[i]);
         }
      }
   
      private int add(double[] location, T load){
         pointLocations.add(location);
         pointPayloads.add(load);
         return entries;
      }
      private void split(){
         int offset = index*2*_dimensions;
      
         double diff = 0;
         for(int i = 0; i < _dimensions; i++){
            double min = nodeMinMaxBounds.array[offset];
            double max = nodeMinMaxBounds.array[offset+1];
            if(max-min>diff){
               double mean = 0;
               for(int j = 0; j < entries; j++)
                  mean += pointLocations.array[i+_dimensions*j];
            
               mean = mean/entries;
               double varianceSum = 0;
            
               for(int j = 0; j < entries; j++)
                  varianceSum += sqr(mean-pointLocations.array[i+_dimensions*j]);
            
               if(varianceSum>diff*entries){
                  diff = varianceSum/entries;
                  splitVal = mean;
               
                  splitDim = i;
               }
            }
            offset += 2;
         }
      
         //kill all the nasties
         if(splitVal == Double.POSITIVE_INFINITY)
            splitVal = Double.MAX_VALUE;
         else if(splitVal == Double.NEGATIVE_INFINITY)
            splitVal = Double.MIN_VALUE;
         else if(splitVal == nodeMinMaxBounds.array[index*2*_dimensions + 2*splitDim + 1])
            splitVal = nodeMinMaxBounds.array[index*2*_dimensions + 2*splitDim];   
      
         less = new Node(mem_recycle);//recycle that memory!
         more = new Node();
      
         //reduce garbage by factor of _bucketSize by recycling this array
         double[] pointLocation = new double[_dimensions];
         for(int i = 0; i < entries; i++){
            System.arraycopy(pointLocations.array,i*_dimensions,pointLocation,0,_dimensions);
            T load = pointPayloads.get(i);
         
            if(pointLocation[splitDim] < splitVal){
               less.expandBounds(pointLocation);
               less.add(pointLocation,load);
            }
            else{
               more.expandBounds(pointLocation);   
               more.add(pointLocation,load);
            }
         }
         if(less.entries*more.entries == 0){
         //one of them was 0, so the split was worthless. throw it away.
            less = null;
            more = null;
            _nodes -= 2;//recall that bounds memory
         }
         else{
         
         //we won't be needing that now, so keep it for the next split to reduce garbage
            mem_recycle = pointLocations.array;
         
            pointLocations = null;
         
            pointPayloads.clear();
            pointPayloads = null;
         }
      }
   
   }
 
 
   private static class ContiguousDoubleArrayList{
      double[] array;
      int size;
      ContiguousDoubleArrayList(){
         this(300);
      }
      ContiguousDoubleArrayList(int size){
         this(new double[size]);
      }
      ContiguousDoubleArrayList(double[] data){
         array = data;
      }
      ContiguousDoubleArrayList add(double[] da){
         if(size + da.length > array.length){
            array = Arrays.copyOf(array,(array.length+da.length)*2);
            //System.out.println("Doubling!");
         }
      
         System.arraycopy(da,0,array,size,da.length);
         size += da.length;
         return this;
      }
   }
 
   private static final double sqr(double d){
      return d*d;}
 
}