Difference between revisions of "User:Skilgannon/KDTree"
Jump to navigation
Jump to search
Skilgannon (talk | contribs) (Add ball and rectangle searches, clarify licence details, split KNN search method) |
Skilgannon (talk | contribs) m (fix indentation) |
||
Line 1: | Line 1: | ||
− | <code><syntaxhighlight> | + | <code><syntaxhighlight>/* |
− | /* | ||
** KDTree.java by Julian Kent | ** KDTree.java by Julian Kent | ||
** | ** | ||
Line 6: | Line 5: | ||
** | ** | ||
** Licence summary: | ** Licence summary: | ||
− | + | ** Under this licence you are free to: | |
− | + | ** Share — copy and redistribute the material in any medium or format | |
− | + | ** Adapt — remix, transform, and build upon the material | |
− | + | ** The licensor cannot revoke these freedoms as long as you follow the license terms. | |
− | + | ** | |
− | + | ** Under the following terms: | |
− | + | ** Attribution — You must give appropriate credit, provide a link to the license, and indicate | |
− | + | ** if changes were made. You may do so in any reasonable manner, but not in any | |
− | + | ** way that suggests the licensor endorses you or your use. | |
− | + | ** NonCommercial — You may not use the material for commercial purposes. | |
− | + | ** ShareAlike — If you remix, transform, or build upon the material, you must distribute your | |
− | + | ** contributions under the same license as the original. | |
− | + | ** No additional restrictions | |
− | + | ** — You may not apply legal terms or technological measures that legally restrict | |
− | + | ** others from doing anything the license permits. | |
− | + | ** | |
** See full licencing details here: http://creativecommons.org/licenses/by-nc-sa/3.0/ | ** See full licencing details here: http://creativecommons.org/licenses/by-nc-sa/3.0/ | ||
** | ** |
Revision as of 13:24, 28 November 2013
/*
** KDTree.java by Julian Kent
**
** Licenced under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
**
** Licence summary:
** Under this licence you are free to:
** Share — copy and redistribute the material in any medium or format
** Adapt — remix, transform, and build upon the material
** The licensor cannot revoke these freedoms as long as you follow the license terms.
**
** Under the following terms:
** Attribution — You must give appropriate credit, provide a link to the license, and indicate
** if changes were made. You may do so in any reasonable manner, but not in any
** way that suggests the licensor endorses you or your use.
** NonCommercial — You may not use the material for commercial purposes.
** ShareAlike — If you remix, transform, or build upon the material, you must distribute your
** contributions under the same license as the original.
** No additional restrictions
** — You may not apply legal terms or technological measures that legally restrict
** others from doing anything the license permits.
**
** See full licencing details here: http://creativecommons.org/licenses/by-nc-sa/3.0/
**
** For additional licencing rights please contact jkflying@gmail.com
**
*/
package jk.mega;
import java.util.ArrayList;
import java.util.Arrays;
public abstract class KDTree<T>{
//use a big bucketSize so that we have less node bounds (for more cache hits) and better splits
private static final int _bucketSize = 50;
private final int _dimensions;
private int _nodes;
private final Node root;
private final ArrayList<Node> nodeList = new ArrayList<Node>();
//prevent GC from having to collect _bucketSize*dimensions*8 bytes each time a leaf splits
private double[] mem_recycle;
//the starting values for bounding boxes, for easy access
private final double[] bounds_template;
//one big self-expanding array to keep all the node bounding boxes so that they stay in cache
// node bounds available at:
//low: 2 * _dimensions * node.index + 2 * dim
//high: 2 * _dimensions * node.index + 2 * dim + 1
private final ContiguousDoubleArrayList nodeMinMaxBounds;
private KDTree(int dimensions){
_dimensions = dimensions;
//initialise this big so that it ends up in 'old' memory
nodeMinMaxBounds = new ContiguousDoubleArrayList(512 * 1024 / 8 + 2*_dimensions);
mem_recycle = new double[_bucketSize*dimensions];
bounds_template = new double[2*_dimensions];
Arrays.fill(bounds_template,Double.NEGATIVE_INFINITY);
for(int i = 0, max = 2*_dimensions; i < max; i+=2)
bounds_template[i] = Double.POSITIVE_INFINITY;
//and.... start!
root = new Node();
}
public int nodes(){
return _nodes;
}
public int size(){
return root.entries;
}
public int addPoint(double[] location, T payload){
Node addNode = root;
//Do a Depth First Search to find the Node where 'location' should be stored
while(addNode.pointLocations == null){
addNode.expandBounds(location);
if(location[addNode.splitDim] < addNode.splitVal)
addNode = nodeList.get(addNode.lessIndex);
else
addNode = nodeList.get(addNode.moreIndex);
}
addNode.expandBounds(location);
int nodeSize = addNode.add(location,payload);
if(nodeSize % _bucketSize == 0)
//try splitting again once every time the node passes a _bucketSize multiple
//in case it is full of points of the same location and won't split
addNode.split();
return root.entries;
}
public ArrayList<SearchResult<T>> nearestNeighbours(double[] searchLocation, int K){
IntStack stack = new IntStack();
PrioQueue<T> results = new PrioQueue<T>(K,true);
stack.push(root.index);
int added = 0;
while(stack.size() > 0 ){
int nodeIndex = stack.pop();
if(added < K || results.peekPrio() > pointRectDist(nodeIndex,searchLocation)){
Node node = nodeList.get(nodeIndex);
if(node.pointLocations == null)
node.search(searchLocation,stack);
else
added += node.search(searchLocation,results);
}
}
ArrayList<SearchResult<T>> returnResults = new ArrayList<SearchResult<T>>(K);
double[] priorities = results.priorities;
Object[] elements = results.elements;
for(int i = 0; i < K; i++){//forward (closest first)
SearchResult s = new SearchResult(priorities[i],(T)elements[i]);
returnResults.add(s);
}
return returnResults;
}
public ArrayList<T> ballSearch(double[] searchLocation, double radius){
IntStack stack = new IntStack();
ArrayList<T> results = new ArrayList<T>();
stack.push(root.index);
while(stack.size() > 0 ){
int nodeIndex = stack.pop();
if(radius > pointRectDist(nodeIndex, searchLocation)){
Node node = nodeList.get(nodeIndex);
if(node.pointLocations == null)
stack.push(node.moreIndex).push(node.lessIndex);
else
node.searchBall(searchLocation, radius, results);
}
}
return results;
}
public ArrayList<T> rectSearch(double[] mins, double[] maxs){
IntStack stack = new IntStack();
ArrayList<T> results = new ArrayList<T>();
stack.push(root.index);
while(stack.size() > 0 ){
int nodeIndex = stack.pop();
if(overlaps(mins,maxs,nodeIndex)){
Node node = nodeList.get(nodeIndex);
if(node.pointLocations == null)
stack.push(node.moreIndex).push(node.lessIndex);
else
node.searchRect(mins, maxs, results);
}
}
return results;
}
abstract double pointRectDist(int offset, final double[] location);
abstract double pointDist(double[] arr, double[] location, int index);
boolean contains(double[] arr, double[] mins, double[] maxs, int index){
int offset = (index+1)*mins.length;
for(int i = mins.length; i-- > 0 ;){
double d = arr[--offset];
if(mins[i] > d | d > maxs[i])
return false;
}
return true;
}
boolean overlaps(double[] mins, double[] maxs, int offset){
offset *= (2*maxs.length);
final double[] array = nodeMinMaxBounds.array;
for(int i = 0; i < maxs.length; i++,offset += 2){
double bmin = array[offset], bmax = array[offset+1];
if(mins[i] > bmax | maxs[i] < bmin)
return false;
}
return true;
}
public static class Euclidean<T> extends KDTree<T>{
public Euclidean(int dims){
super(dims);
}
double pointRectDist(int offset, final double[] location){
offset *= (2*super._dimensions);
double distance=0;
final double[] array = super.nodeMinMaxBounds.array;
for(int i = 0; i < location.length; i++,offset += 2){
double diff = 0;
double bv = array[offset];
double lv = location[i];
if(bv > lv)
diff = bv-lv;
else{
bv=array[offset+1];
if(lv>bv)
diff = lv-bv;
}
distance += sqr(diff);
}
return distance;
}
double pointDist(double[] arr, double[] location, int index){
double distance = 0;
int offset = (index+1)*super._dimensions;
for(int i = super._dimensions; i-- > 0 ;){
distance += sqr(arr[--offset] - location[i]);
}
return distance;
}
}
public static class Manhattan<T> extends KDTree<T>{
public Manhattan(int dims){
super(dims);
}
double pointRectDist(int offset, final double[] location){
offset *= (2*super._dimensions);
double distance=0;
final double[] array = super.nodeMinMaxBounds.array;
for(int i = 0; i < location.length; i++,offset += 2){
double diff = 0;
double bv = array[offset];
double lv = location[i];
if(bv > lv)
diff = bv-lv;
else{
bv=array[offset+1];
if(lv>bv)
diff = lv-bv;
}
distance += (diff);
}
return distance;
}
double pointDist(double[] arr, double[] location, int index){
double distance = 0;
int offset = (index+1)*super._dimensions;
for(int i = super._dimensions; i-- > 0 ;){
distance += Math.abs(arr[--offset] - location[i]);
}
return distance;
}
}
//NB! This Priority Queue keeps things with the LOWEST priority.
//If you want highest priority items kept, negate your values
private static class PrioQueue<S>{
Object[] elements;
double[] priorities;
private double minPrio;
private int size;
PrioQueue(int size, boolean prefill){
elements = new Object[size];
priorities = new double[size];
Arrays.fill(priorities,Double.POSITIVE_INFINITY);
if(prefill){
minPrio = Double.POSITIVE_INFINITY;
this.size = size;
}
}
//uses O(log(n)) comparisons and one big shift of size O(N)
//and is MUCH simpler than a heap --> faster on small sets, faster JIT
void addNoGrow(S value, double priority){
int index = searchFor(priority);
int nextIndex = index + 1;
int length = size - index - 1;
System.arraycopy(elements,index,elements,nextIndex,length);
System.arraycopy(priorities,index,priorities,nextIndex,length);
elements[index]=value;
priorities[index]=priority;
minPrio = priorities[size-1];
}
int searchFor(double priority){
int i = size-1;
int j = 0;
while(i>=j){
int index = (i+j)>>>1;
if( priorities[index] < priority)
j = index+1;
else
i = index-1;
}
return j;
}
double peekPrio(){
return minPrio;
}
}
public static class SearchResult<S>{
public double distance;
public S payload;
SearchResult(double dist, S load){
distance = dist;
payload = load;
}
}
private class Node {
//for accessing bounding box data
// - if trees weren't so unbalanced might be better to use an implicit heap?
int index;
//keep track of size of subtree
int entries;
//leaf
ContiguousDoubleArrayList pointLocations ;
ArrayList<T> pointPayloads = new ArrayList<T>(_bucketSize);
//stem
//Node less, more;
int lessIndex, moreIndex;
int splitDim;
double splitVal;
Node(){
this(new double[_bucketSize*_dimensions]);
}
Node(double[] pointMemory){
pointLocations = new ContiguousDoubleArrayList(pointMemory);
index = _nodes++;
nodeList.add(this);
nodeMinMaxBounds.add(bounds_template);
}
//returns number of points added to results
void search(double[] searchLocation, IntStack stack){
if(searchLocation[splitDim] < splitVal)
stack.push(moreIndex).push(lessIndex);//less will be popped first
else
stack.push(lessIndex).push(moreIndex);//more will be popped first
}
int search(double[] searchLocation, PrioQueue<T> results){
int updated = 0;
for(int j = entries; j-- > 0;){
double distance = pointDist(pointLocations.array,searchLocation,j);
if(results.peekPrio() > distance){
updated++;
results.addNoGrow(pointPayloads.get(j),distance);
}
}
return updated;
}
void searchBall(double[] searchLocation, double radius, ArrayList<T> results){
for(int j = entries; j-- > 0;){
double distance = pointDist(pointLocations.array,searchLocation,j);
if(radius >= distance){
results.add(pointPayloads.get(j));
}
}
}
void searchRect(double[] mins, double[] maxs, ArrayList<T> results){
for(int j = entries; j-- > 0;)
if(contains(pointLocations.array,mins,maxs,j))
results.add(pointPayloads.get(j));
}
void expandBounds(double[] location){
entries++;
int mio = index*2*_dimensions;
for(int i = 0; i < _dimensions;i++){
nodeMinMaxBounds.array[mio] = Math.min(nodeMinMaxBounds.array[mio++],location[i]);
nodeMinMaxBounds.array[mio] = Math.max(nodeMinMaxBounds.array[mio++],location[i]);
}
}
int add(double[] location, T load){
pointLocations.add(location);
pointPayloads.add(load);
return entries;
}
void split(){
int offset = index*2*_dimensions;
double diff = 0;
for(int i = 0; i < _dimensions; i++){
double min = nodeMinMaxBounds.array[offset];
double max = nodeMinMaxBounds.array[offset+1];
if(max-min>diff){
double mean = 0;
for(int j = 0; j < entries; j++)
mean += pointLocations.array[i+_dimensions*j];
mean = mean/entries;
double varianceSum = 0;
for(int j = 0; j < entries; j++)
varianceSum += sqr(mean-pointLocations.array[i+_dimensions*j]);
if(varianceSum>diff*entries){
diff = varianceSum/entries;
splitVal = mean;
splitDim = i;
}
}
offset += 2;
}
//kill all the nasties
if(splitVal == Double.POSITIVE_INFINITY)
splitVal = Double.MAX_VALUE;
else if(splitVal == Double.NEGATIVE_INFINITY)
splitVal = Double.MIN_VALUE;
else if(splitVal == nodeMinMaxBounds.array[index*2*_dimensions + 2*splitDim + 1])
splitVal = nodeMinMaxBounds.array[index*2*_dimensions + 2*splitDim];
Node less = new Node(mem_recycle);//recycle that memory!
Node more = new Node();
lessIndex = less.index;
moreIndex = more.index;
//reduce garbage by factor of _bucketSize by recycling this array
double[] pointLocation = new double[_dimensions];
for(int i = 0; i < entries; i++){
System.arraycopy(pointLocations.array,i*_dimensions,pointLocation,0,_dimensions);
T load = pointPayloads.get(i);
if(pointLocation[splitDim] < splitVal){
less.expandBounds(pointLocation);
less.add(pointLocation,load);
}
else{
more.expandBounds(pointLocation);
more.add(pointLocation,load);
}
}
if(less.entries*more.entries == 0){
//one of them was 0, so the split was worthless. throw it away.
_nodes -= 2;//recall that bounds memory
nodeList.remove(moreIndex);
nodeList.remove(lessIndex);
}
else{
//we won't be needing that now, so keep it for the next split to reduce garbage
mem_recycle = pointLocations.array;
pointLocations = null;
pointPayloads.clear();
pointPayloads = null;
}
}
}
private static class ContiguousDoubleArrayList{
double[] array;
int size;
ContiguousDoubleArrayList(){this(300);}
ContiguousDoubleArrayList(int size){this(new double[size]);}
ContiguousDoubleArrayList(double[] data){array = data;}
ContiguousDoubleArrayList add(double[] da){
if(size + da.length > array.length)
array = Arrays.copyOf(array,(array.length+da.length)*2);
System.arraycopy(da,0,array,size,da.length);
size += da.length;
return this;
}
}
private static class IntStack{
int[] array;
int size;
IntStack(){this(64);}
IntStack(int size){this(new int[size]);}
IntStack(int[] data){array = data;}
IntStack push(int i){
if(size>= array.length)
array = Arrays.copyOf(array,(array.length+1)*2);
array[size++] = i;
return this;
}
int pop(){
return array[--size];
}
int size(){
return size;
}
}
static final double sqr(double d){
return d*d;}
}