Difference between revisions of "User:Chase-san/KohonenMap"
Jump to navigation
Jump to search
m (Updating) |
m (→org.csdgn.maru.util.KohonenMap: Removing unneeded import and most finals.) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 11: | Line 11: | ||
KohonenMap map = new KohonenMap(new int[]{16},2,1); | KohonenMap map = new KohonenMap(new int[]{16},2,1); | ||
− | //Initializing gives every | + | //Initializing gives every input and output a random value, which allows the Kohonen map to work. |
map.initialize(); | map.initialize(); | ||
Line 28: | Line 28: | ||
double[][] output = new double[][] { | double[][] output = new double[][] { | ||
− | {0},{1},{1},{0} | + | {0}, {1}, {1}, {0} |
}; | }; | ||
//To train your map | //To train your map | ||
Line 50: | Line 50: | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | |||
===org.csdgn.maru.util.KohonenMap=== | ===org.csdgn.maru.util.KohonenMap=== | ||
Line 56: | Line 55: | ||
package org.csdgn.maru.util; | package org.csdgn.maru.util; | ||
− | |||
import java.util.Random; | import java.util.Random; | ||
Line 66: | Line 64: | ||
* org.csdgn.nn.DistanceFunction<br> | * org.csdgn.nn.DistanceFunction<br> | ||
* org.csdgn.nn.density.StandardDensity<br> | * org.csdgn.nn.density.StandardDensity<br> | ||
− | * org.csdgn.nn.distance.EulerDistanceSquared | + | * org.csdgn.nn.distance.EulerDistanceSquared<br><br> |
+ | * | ||
+ | * Train The Map<br> | ||
+ | * findInputBMU(double[])<br> | ||
+ | * train(double[])<br><br> | ||
+ | * Find Output<br> | ||
+ | * findInputBMU(double[])<br> | ||
+ | * getOutput() | ||
* | * | ||
*/ | */ | ||
Line 78: | Line 83: | ||
private Density density; | private Density density; | ||
private Distance distance; | private Distance distance; | ||
+ | private Distance neighborhood; | ||
private boolean wrap = false; | private boolean wrap = false; | ||
private int BMU; | private int BMU; | ||
Line 105: | Line 111: | ||
this.density = new Density.Simple(); | this.density = new Density.Simple(); | ||
this.distance = new Distance.EulerSq(); | this.distance = new Distance.EulerSq(); | ||
+ | this.neighborhood = new Distance.Manhattan(); | ||
int[] pos = new int[mapSize.length]; | int[] pos = new int[mapSize.length]; | ||
Line 126: | Line 133: | ||
* Initializes the map to random values | * Initializes the map to random values | ||
*/ | */ | ||
− | public | + | public void initialize() { |
Random r = new Random(); | Random r = new Random(); | ||
initialize(r); | initialize(r); | ||
Line 135: | Line 142: | ||
* function. | * function. | ||
*/ | */ | ||
− | public | + | public void initialize(Random random) { |
for (Node n : map) { | for (Node n : map) { | ||
for (int i = 0; i < n.input.length; ++i) | for (int i = 0; i < n.input.length; ++i) | ||
Line 149: | Line 156: | ||
* @return the BMUs identifier | * @return the BMUs identifier | ||
*/ | */ | ||
− | public | + | public int findInputBMU(double[] input) { |
BMU = 0; | BMU = 0; | ||
Line 169: | Line 176: | ||
* @return the BMUs identifier | * @return the BMUs identifier | ||
*/ | */ | ||
− | public | + | public int findOutputBMU(double[] output) { |
BMU = 0; | BMU = 0; | ||
double distance = Double.MAX_VALUE; | double distance = Double.MAX_VALUE; | ||
Line 187: | Line 194: | ||
* @return the WMUs identifier | * @return the WMUs identifier | ||
*/ | */ | ||
− | public | + | public int findInputWMU(double[] input) { |
BMU = 0; | BMU = 0; | ||
double distance = Double.MIN_VALUE; | double distance = Double.MIN_VALUE; | ||
Line 205: | Line 212: | ||
* @return the WMUs identifier | * @return the WMUs identifier | ||
*/ | */ | ||
− | public | + | public int findOutputWMU(double[] output) { |
BMU = 0; | BMU = 0; | ||
double distance = Double.MIN_VALUE; | double distance = Double.MIN_VALUE; | ||
Line 223: | Line 230: | ||
* @param index | * @param index | ||
*/ | */ | ||
− | public | + | public void setMatchIndex(int index) { |
BMU = Math.max(0, Math.min(index, map.length - 1)); | BMU = Math.max(0, Math.min(index, map.length - 1)); | ||
} | } | ||
Line 232: | Line 239: | ||
* @return the input vector | * @return the input vector | ||
*/ | */ | ||
− | public | + | public double[] getInput() { |
return this.map[BMU].input; | return this.map[BMU].input; | ||
} | } | ||
Line 241: | Line 248: | ||
* @return the output vector | * @return the output vector | ||
*/ | */ | ||
− | public | + | public double[] getOutput() { |
return this.map[BMU].output; | return this.map[BMU].output; | ||
} | } | ||
Line 250: | Line 257: | ||
* @return the input vector | * @return the input vector | ||
*/ | */ | ||
− | public | + | public double[] getInput(int id) { |
if (id >= 0 && id < map.length) | if (id >= 0 && id < map.length) | ||
return this.map[id].input; | return this.map[id].input; | ||
Line 261: | Line 268: | ||
* @return the output vector | * @return the output vector | ||
*/ | */ | ||
− | public | + | public double[] getOutput(int id) { |
if (id >= 0 && id < map.length) | if (id >= 0 && id < map.length) | ||
return this.map[id].output; | return this.map[id].output; | ||
Line 273: | Line 280: | ||
* value between 0 and 1 | * value between 0 and 1 | ||
*/ | */ | ||
− | public | + | public void setLearningRate(double rate) { |
learningRate = Math.max(Math.min(rate, 1), 0); | learningRate = Math.max(Math.min(rate, 1), 0); | ||
} | } | ||
Line 282: | Line 289: | ||
* @return the learning rate | * @return the learning rate | ||
*/ | */ | ||
− | public | + | public double getLearningRate() { |
return learningRate; | return learningRate; | ||
} | } | ||
Line 289: | Line 296: | ||
* Sets the map to wrap its updates (slightly more costly) | * Sets the map to wrap its updates (slightly more costly) | ||
*/ | */ | ||
− | public | + | public void setWraps(boolean doesWrap) { |
wrap = doesWrap; | wrap = doesWrap; | ||
} | } | ||
Line 298: | Line 305: | ||
* @return | * @return | ||
*/ | */ | ||
− | public | + | public boolean isWrapping() { |
return wrap; | return wrap; | ||
} | } | ||
Line 324: | Line 331: | ||
* the Density Function | * the Density Function | ||
*/ | */ | ||
− | public | + | public void setDensityFunction(Density func) { |
this.density = func; | this.density = func; | ||
} | } | ||
Line 335: | Line 342: | ||
* @param func | * @param func | ||
*/ | */ | ||
− | public | + | public void setDistanceFunction(Distance func) { |
this.distance = func; | this.distance = func; | ||
+ | } | ||
+ | |||
+ | /** | ||
+ | * Sets the distance function used to calculate the neighborhood distance between nodes. | ||
+ | * @param func | ||
+ | */ | ||
+ | public void setNeighborhoodDistanceFunction(Distance func) { | ||
+ | this.neighborhood = func; | ||
} | } | ||
Line 347: | Line 362: | ||
* expected output vector | * expected output vector | ||
*/ | */ | ||
− | public | + | public void train(double input[], double output[]) { |
Node bmu = map[BMU]; | Node bmu = map[BMU]; | ||
for (int i = 0; i < map.length; ++i) { | for (int i = 0; i < map.length; ++i) { | ||
Line 354: | Line 369: | ||
} | } | ||
− | + | private class Node { | |
− | |||
− | |||
− | private | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
/** Location in the neighborhood */ | /** Location in the neighborhood */ | ||
private final int[] position; | private final int[] position; | ||
Line 381: | Line 383: | ||
} | } | ||
− | private | + | private double train(double c, double t, double n) { |
return c + n * (t - c) * learningRate; | return c + n * (t - c) * learningRate; | ||
} | } | ||
− | private | + | private void update(int[] pos, double[] in, double[] out) { |
− | double distance = | + | double distance = neighborhood.distance(pos, position); |
if (wrap) { | if (wrap) { | ||
int[] tpos = pos.clone(); | int[] tpos = pos.clone(); | ||
Line 398: | Line 400: | ||
npos[i] -= mapSize[i]; | npos[i] -= mapSize[i]; | ||
} | } | ||
− | double ndist = | + | double ndist = neighborhood.distance(tpos, npos); |
if (ndist < distance) | if (ndist < distance) | ||
distance = ndist; | distance = ndist; | ||
Line 456: | Line 458: | ||
public static abstract class Distance { | public static abstract class Distance { | ||
public abstract double distance(double[] p, double[] q); | public abstract double distance(double[] p, double[] q); | ||
+ | public double distance(int[] p, int[] q) { | ||
+ | double[] dp = new double[p.length]; | ||
+ | double[] dq = new double[q.length]; | ||
+ | for(int i=0;i<p.length;++i) | ||
+ | dp[i] = p[i]; | ||
+ | for(int i=0;i<p.length;++i) | ||
+ | dq[i] = q[i]; | ||
+ | return distance(dp,dq); | ||
+ | } | ||
+ | |||
+ | public static class Manhattan extends Distance { | ||
+ | /** | ||
+ | * Calculates the manhatten distance between the two points. | ||
+ | */ | ||
+ | @Override | ||
+ | public double distance(double[] p, double[] q) { | ||
+ | if (p == null || q == null) | ||
+ | return 0; | ||
+ | int len = Math.min(p.length, q.length); | ||
+ | int output = 0; | ||
+ | for (int i = 0; i < len; ++i) | ||
+ | output += Math.abs(p[i] - q[i]); | ||
+ | return output; | ||
+ | } | ||
+ | } | ||
public static class EulerSq extends Distance { | public static class EulerSq extends Distance { |
Latest revision as of 07:56, 24 January 2014
This is my implementation of a Self-organizing map.
This and all my other code in which I display on the robowiki falls under the ZLIB License.
How to use
//Create the map, 16 nodes, 2 input, 1 output
KohonenMap map = new KohonenMap(new int[]{16},2,1);
//Initializing gives every input and output a random value, which allows the Kohonen map to work.
map.initialize();
//For example a KohonenMap can be used for binary values
//A larger map is recommended for better output
//XOR
//0 0 0
//0 1 1
//1 0 1
//1 1 0
double[][] input = new double[][] {
{0,0}, {0,1}, {1,0}, {1,1}
};
double[][] output = new double[][] {
{0}, {1}, {1}, {0}
};
//To train your map
for(int i = 0; i < input.length; ++i) {
//find the BMU you want to train
map.findInputBMU(input[i]);
//and then tell the main to train on that BMU
map.train(input[i], output[i]);
}
//to get meaningful data from the map
for(int i = 0; i < input.length; ++i) {
//find the BMU
map.findInputBMU(input[i]);
//get the output for that BMU
double out = map.getOutput()[0];
//You can simply round to get the desired binary output
System.out.println(Arrays.toString(input[i]) + " " + Math.round(out) + " " + out);
}
org.csdgn.maru.util.KohonenMap
package org.csdgn.maru.util;
import java.util.Random;
/**
* A Self-Organizing Map implementation.
*
* Requires: <br>
* org.csdgn.nn.DensityFunction<br>
* org.csdgn.nn.DistanceFunction<br>
* org.csdgn.nn.density.StandardDensity<br>
* org.csdgn.nn.distance.EulerDistanceSquared<br><br>
*
* Train The Map<br>
* findInputBMU(double[])<br>
* train(double[])<br><br>
* Find Output<br>
* findInputBMU(double[])<br>
* getOutput()
*
*/
public class KohonenMap {
/**
* Holds the neighborhood layout;
*/
private final Node[] map;
private final int[] mapSize;
private double learningRate = 0.8;
private Density density;
private Distance distance;
private Distance neighborhood;
private boolean wrap = false;
private int BMU;
private double cutoff = 1e-4;
/**
* @param mapSize
* Size of the neighborhood. Example: {10,10} produces a 2
* dimensional map, each dimension having 10 nodes. Total nodes
* would be 100.
* @param input
* The length of the input vector (1D only)
* @param output
* The length of the output vector (1D only)
*/
public KohonenMap(int[] mapSize, int input, int output) {
/* Setup the map */
int size = 1;
for (int m : mapSize)
size *= m;
this.map = new Node[size];
this.mapSize = mapSize.clone();
this.density = new Density.Simple();
this.distance = new Distance.EulerSq();
this.neighborhood = new Distance.Manhattan();
int[] pos = new int[mapSize.length];
for (int i = 0; i < map.length; ++i) {
this.map[i] = new Node(mapSize.length, input, output);
/* Setup the location of each node, for speed reasons. */
System.arraycopy(pos, 0, this.map[i].position, 0, pos.length);
/* Update the position marker */
++pos[0];
for (int j = 0; j < pos.length - 1; ++j) {
if (pos[j] >= mapSize[j]) {
++pos[j + 1];
pos[j] = 0;
}
}
}
}
/**
* Initializes the map to random values
*/
public void initialize() {
Random r = new Random();
initialize(r);
}
/**
* Initializes the map with the given random function. Uses the nextDouble
* function.
*/
public void initialize(Random random) {
for (Node n : map) {
for (int i = 0; i < n.input.length; ++i)
n.input[i] = random.nextDouble();
for (int i = 0; i < n.output.length; ++i)
n.output[i] = random.nextDouble();
}
}
/**
* Finds the Best Matching Unit for the given input.
*
* @return the BMUs identifier
*/
public int findInputBMU(double[] input) {
BMU = 0;
double distance = Double.MAX_VALUE;
for (int i = 0; i < map.length; ++i) {
double dist = this.distance.distance(map[i].input, input);
if (dist < distance) {
distance = dist;
BMU = i;
}
}
return BMU;
}
/**
* Finds the Best Matching Unit for the given output.
*
* @return the BMUs identifier
*/
public int findOutputBMU(double[] output) {
BMU = 0;
double distance = Double.MAX_VALUE;
for (int i = 0; i < map.length; ++i) {
double dist = this.distance.distance(map[i].output, output);
if (dist < distance) {
distance = dist;
BMU = i;
}
}
return BMU;
}
/**
* Finds the Worst Matching Unit for the given input
*
* @return the WMUs identifier
*/
public int findInputWMU(double[] input) {
BMU = 0;
double distance = Double.MIN_VALUE;
for (int i = 0; i < map.length; ++i) {
double dist = this.distance.distance(map[i].input, input);
if (dist > distance) {
distance = dist;
BMU = i;
}
}
return BMU;
}
/**
* Finds the Worst Matching Unit for the given output
*
* @return the WMUs identifier
*/
public int findOutputWMU(double[] output) {
BMU = 0;
double distance = Double.MIN_VALUE;
for (int i = 0; i < map.length; ++i) {
double dist = this.distance.distance(map[i].output, output);
if (dist > distance) {
distance = dist;
BMU = i;
}
}
return BMU;
}
/**
* Sets the Matched index to the set value.
*
* @param index
*/
public void setMatchIndex(int index) {
BMU = Math.max(0, Math.min(index, map.length - 1));
}
/**
* This returns the input of the last found BMU or WMU.
*
* @return the input vector
*/
public double[] getInput() {
return this.map[BMU].input;
}
/**
* This returns the output of the last found BMU or WMU.
*
* @return the output vector
*/
public double[] getOutput() {
return this.map[BMU].output;
}
/**
* This returns the input of the given ID.
*
* @return the input vector
*/
public double[] getInput(int id) {
if (id >= 0 && id < map.length)
return this.map[id].input;
return null;
}
/**
* This returns the output of the given ID.
*
* @return the output vector
*/
public double[] getOutput(int id) {
if (id >= 0 && id < map.length)
return this.map[id].output;
return null;
}
/**
* Sets the learning rate of this KohonenMap
*
* @param rate
* value between 0 and 1
*/
public void setLearningRate(double rate) {
learningRate = Math.max(Math.min(rate, 1), 0);
}
/**
* Returns the current rate of learning
*
* @return the learning rate
*/
public double getLearningRate() {
return learningRate;
}
/**
* Sets the map to wrap its updates (slightly more costly)
*/
public void setWraps(boolean doesWrap) {
wrap = doesWrap;
}
/**
* Returns if the current map wraps
*
* @return
*/
public boolean isWrapping() {
return wrap;
}
/**
* Gets the current cutoff density.
*/
public double getCutoff() {
return cutoff;
}
/**
* The cutoff density in which under a node will not be trained.
* @param cutoff
*/
public void setCutoff(double cutoff) {
this.cutoff = cutoff;
}
/**
* Sets the density function this map uses for updating nearby nodes. If
* unset it uses the StandardDensity class.
*
* @param func
* the Density Function
*/
public void setDensityFunction(Density func) {
this.density = func;
}
/**
* Sets the distance function used to find the best or worst matching unit.
* If unset, this map uses the EulerDistanceSquared class.<br>
* The neighborhood distance is Manhattan Distance.
*
* @param func
*/
public void setDistanceFunction(Distance func) {
this.distance = func;
}
/**
* Sets the distance function used to calculate the neighborhood distance between nodes.
* @param func
*/
public void setNeighborhoodDistanceFunction(Distance func) {
this.neighborhood = func;
}
/**
* Updates the map with the given data. Uses the last found BMU or WMU.
*
* @param input
* input vector
* @param output
* expected output vector
*/
public void train(double input[], double output[]) {
Node bmu = map[BMU];
for (int i = 0; i < map.length; ++i) {
map[i].update(bmu.position, input, output);
}
}
private class Node {
/** Location in the neighborhood */
private final int[] position;
/** Input vector */
private final double[] input;
/** Output vector */
private final double[] output;
public Node(int mapSize, int inputSize, int outputSize) {
position = new int[mapSize];
input = new double[inputSize];
output = new double[outputSize];
}
private double train(double c, double t, double n) {
return c + n * (t - c) * learningRate;
}
private void update(int[] pos, double[] in, double[] out) {
double distance = neighborhood.distance(pos, position);
if (wrap) {
int[] tpos = pos.clone();
int[] npos = position.clone();
for (int i = 0; i < tpos.length; ++i) {
tpos[i] += mapSize[i] / 2;
npos[i] += mapSize[i] / 2;
if (tpos[i] > mapSize[i])
tpos[i] -= mapSize[i];
if (npos[i] > mapSize[i])
npos[i] -= mapSize[i];
}
double ndist = neighborhood.distance(tpos, npos);
if (ndist < distance)
distance = ndist;
}
double neighborhood = density.density(distance);
/* Changes below this point benefits are negligible */
if (neighborhood < cutoff)
return;
for (int i = 0; i < input.length; ++i)
input[i] = train(input[i], in[i], neighborhood);
for (int i = 0; i < output.length; ++i)
output[i] = train(output[i], out[i], neighborhood);
}
}
public static abstract class Density {
/**
* Calculates the density at the given point, where x is a certain distance from the center of the distribution.
*/
public abstract double density(double x);
public static class Normal extends Density {
private final double multi;
private final double variance;
private final double mean;
public Normal() {
this(1,0);
}
public Normal(double variance, double mean) {
this.multi = 1.0 / Math.sqrt(2*Math.PI*variance);
this.variance = 2.0*variance;
this.mean = mean;
}
@Override
public double density(double x) {
double e = ((x - mean)*(x - mean)) / variance;
return multi*Math.exp(-e);
}
}
public static class Simple extends Density {
/**
* <math>density(x) = 2^{-x^2}</math>
*/
@Override
public double density(double x) {
return Math.pow(2, -(x*x));
}
}
}
public static abstract class Distance {
public abstract double distance(double[] p, double[] q);
public double distance(int[] p, int[] q) {
double[] dp = new double[p.length];
double[] dq = new double[q.length];
for(int i=0;i<p.length;++i)
dp[i] = p[i];
for(int i=0;i<p.length;++i)
dq[i] = q[i];
return distance(dp,dq);
}
public static class Manhattan extends Distance {
/**
* Calculates the manhatten distance between the two points.
*/
@Override
public double distance(double[] p, double[] q) {
if (p == null || q == null)
return 0;
int len = Math.min(p.length, q.length);
int output = 0;
for (int i = 0; i < len; ++i)
output += Math.abs(p[i] - q[i]);
return output;
}
}
public static class EulerSq extends Distance {
/**
* <math>distSqr(p,q) = \sum_{i=0}^n (p_i - q_i)^2</math> where
* <math>n</math> is the size of the smaller of <math>p</math> or
* <math>q</math>
*/
@Override
public double distance(double[] p, double[] q) {
if (p == null || q == null)
return 0;
int len = Math.min(p.length, q.length);
double k, output = 0;
for (int i = 0; i < len; ++i)
output += (k = (p[i] - q[i])) * k;
return output;
}
}
public static class Euler extends EulerSq {
/**
* <math>dist(p,q) = \sqrt_{\sum_{i=0}^n (p_i - q_i)^2}</math> where
* <math>n</math> is the size of the smaller of <math>p</math> or
* <math>q</math>
*/
@Override
public double distance(double[] p, double[] q) {
return Math.sqrt(super.distance(p, q));
}
}
}
}