Difference between revisions of "User:Dsekercioglu/MEA"
Jump to navigation
Jump to search
Dsekercioglu (talk | contribs) |
Dsekercioglu (talk | contribs) (Little fix) |
||
Line 14: | Line 14: | ||
</pre> | </pre> | ||
:This function is slow because of many iterations. | :This function is slow because of many iterations. | ||
− | ;Fast [[MEA]] | + | ;Fast Accurate [[MEA]] |
:By using WolframAlpha and Polynomial Regression, I found a function which gives very close results to the ''Brute Force MEA''. | :By using WolframAlpha and Polynomial Regression, I found a function which gives very close results to the ''Brute Force MEA''. | ||
<pre> | <pre> |
Revision as of 10:48, 24 September 2017
- After brute force MEA calculations, I realised that moving fully orbital wasn't the best option to maximise the MEA. I found a function with polynomial regression which works very well.
- Old Brute Force MEA
double highestMea; for (int a = 0; a < 360000; a++) { // For higher accuracy. Normal value is 360. double angle = Math.toRadians(a / 1000.0); double mea = Math.sin(angle) / (bulletSpeed / 8 - Math.cos(angle)); if (mea > highestMea) { highestMea = mea; } } return highestMea;
- This function is slow because of many iterations.
- Fast Accurate MEA
- By using WolframAlpha and Polynomial Regression, I found a function which gives very close results to the Brute Force MEA.
double x = bulletSpeed; double a = -3.508129323E-5; double b = 2.460363294E-3; double c = -6.666318894E-2; double d = 8.545020365E-1; double e = -3.337830707; double angle = a * Math.pow(x, 4) + b * Math.pow(x, 3) + c * Math.pow(x, 2) + d * x + e; return Math.sin(angle) / (bulletSpeed / 8 - Math.cos(angle));
- Here are some results.
Bullet Velocity/Type | Traditional MEA | Perfect Orbit MEA | Brute Force MEA | Fast Accurate MEA |
---|---|---|---|---|
11.0 | 0.8143399421265254 | 0.7272727272727273 | 1.0596258856320087 | 1.0596258725889567 |
11.5 | 0.7693273435231462 | 0.6956521739130435 | 0.9683640522574986 | 0.968363900596335 |
12.0 | 0.7297276562269663 | 0.6666666666666666 | 0.894427190975601 | 0.8944271125817973 |
12.5 | 0.694498265626556 | 0.64 | 0.8329267300655651 | 0.8329267278277855 |
13.0 | 0.6628738236501358 | 0.6153846153846154 | 0.7807200583557125 | 0.780720043134266 |
13.5 | 0.634273648122496 | 0.5925925925925926 | 0.7356807837876015 | 0.7356807492372547 |
14.0 | 0.6082455789102096 | 0.5714285714285714 | 0.6963106238213576 | 0.6963105997202048 |
14.5 | 0.5844300733415584 | 0.5517241379310345 | 0.6615185844552328 | 0.6615185795887975 |
15.0 | 0.5625362445438555 | 0.5333333333333333 | 0.6304883249909795 | 0.6304883242101953 |
15.5 | 0.5423253027748484 | 0.5161290322580645 | 0.6025948617234669 | 0.6025948511581146 |
16.0 | 0.5235987755982989 | 0.5 | 0.5773502691896257 | 0.5773502519499172 |
16.5 | 0.5061899196266034 | 0.48484848484848486 | 0.5543671429174404 | 0.554367131856091 |
17.0 | 0.4899573262537283 | 0.47058823529411764 | 0.5333333333085944 | 0.5333333322391546 |
17.5 | 0.47478007356550933 | 0.45714285714285713 | 0.513994052961485 | 0.5139940493814433 |
18.0 | 0.4605539916813224 | 0.4444444444444444 | 0.49613893835306566 | 0.4961389212446966 |
18.5 | 0.44718874522671376 | 0.43243243243243246 | 0.47959251946407533 | 0.47959250502886874 |
19.0 | 0.43460552560736715 | 0.42105263157894735 | 0.4642070825481933 | 0.46420708019143475 |
19.5 | 0.42273520519034663 | 0.41025641025641024 | 0.44985724569216 | 0.4498570266324053 |
- As you can see it gives higher results than Perfect orbit and very accurate according to the results.
- Pros
- It is fast.
- It is accurate.
- You can also get the best lateral/advancing velocity because it calculates the retreat angle first.
- Cons
- Robot velocity is fixed to 8.
- Hard to interpret or improve.
- The max value you can enter is 19.7 and the min value you can enter is 11.