Difference between revisions of "User:Starrynte/Remez"
Jump to navigation
Jump to search
m (released sometime this week) |
(released - would appreciate if you test) |
||
Line 8: | Line 8: | ||
Planned feature(s): | Planned feature(s): | ||
* Rational approximations | * Rational approximations | ||
+ | |||
+ | ===How to Use=== | ||
+ | The code is below. Simply change the top part labeled "your settings", and the program does the rest. | ||
+ | <pre> | ||
+ | public class Remez { | ||
+ | //---YOUR SETTINGS--- | ||
+ | static double f(double x){ //THE FUNCTION TO BE APPROXIMATED | ||
+ | return Math.sin(x); | ||
+ | } | ||
+ | static final int DEG = 6; //DEGREE OF THE POLYNOMIAL - MUST BE POSITIVE | ||
+ | static final double lowx = 0d, highx = Math.PI*2; //APPROXIMATES F(X) FROM LOWX TO HIGHX | ||
+ | |||
+ | |||
+ | //---MAIN PROGRAM CODE--- | ||
+ | |||
+ | |||
+ | static final double RANGE = highx - lowx; | ||
+ | static final int COLUMNS = DEG + 3; | ||
+ | static final int ROWS = DEG + 2; | ||
+ | static final double[] extrema = new double[ROWS]; | ||
+ | static final double[][] matrix = new double[ROWS][COLUMNS]; | ||
+ | |||
+ | public static void main(String[] args) { | ||
+ | for(int i=0;i<ROWS;i++) extrema[i]=0.5 * (-Math.cos(i*Math.PI/(DEG + 1)) + 1) * RANGE + lowx; | ||
+ | for(int i=0;i<20;i++) remez(); | ||
+ | for(int i=0;i<DEG;i++) System.out.print(matrix[i][COLUMNS-1] + " + x * ("); | ||
+ | System.out.print(matrix[DEG][COLUMNS-1]); | ||
+ | for(int i=0;i<DEG;i++) System.out.print(")"); | ||
+ | System.out.println("\nMax error: " + matrix[ROWS-1][COLUMNS-1]); | ||
+ | } | ||
+ | |||
+ | private static void remez(){ | ||
+ | for(int i=0;i<ROWS;i++){ | ||
+ | for(int j=0;j<DEG+1;j++) matrix[i][j]=Math.pow(extrema[i],j); | ||
+ | matrix[i][DEG+1]=(i&1)==0?1d:-1d; | ||
+ | matrix[i][DEG+2]=f(extrema[i]); | ||
+ | } | ||
+ | rref(matrix); | ||
+ | extrema[0]=lowx; | ||
+ | int z=1; | ||
+ | for(double x=lowx+(RANGE/1000);x<=highx && z<(DEG+2);x+=(RANGE/1000)){ | ||
+ | if(deverf(x) * deverf(x-(RANGE/1000)) < 0){ | ||
+ | extrema[z]=extrema(x-(RANGE/1000),x); | ||
+ | z++; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | |||
+ | private static void rref(double[][] m){ | ||
+ | int lead; double factor; | ||
+ | for(int r=1;r<ROWS;r++){ //starting at second row | ||
+ | lead=0; | ||
+ | for(int i=0;i<r;i++,lead++){ | ||
+ | factor=m[r][lead]/m[i][lead]; | ||
+ | for(int c=lead;c<COLUMNS;c++){ | ||
+ | m[r][c]-=factor*m[i][c]; | ||
+ | } | ||
+ | } | ||
+ | for(int c=COLUMNS-1;c>=lead;c--){ | ||
+ | m[r][c]/=m[r][lead]; | ||
+ | } | ||
+ | } | ||
+ | for(int r=ROWS-2;r>=0;r--){ //starting at second last row | ||
+ | lead=COLUMNS-2; | ||
+ | for(int i=ROWS-1;i>r;i--,lead--){ | ||
+ | factor=m[r][lead]; | ||
+ | for(int c=lead;c<COLUMNS;c++){ | ||
+ | m[r][c]-=factor*m[i][c]; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | |||
+ | private static double deverf(double x){ | ||
+ | final double h = 0.001 * (1 + Math.abs(x)); | ||
+ | double dev = (f(x+h) - f(x-h))/(2*h); | ||
+ | for(int r=1;r<(ROWS-1);r++){ //constant term doesn't affect derivative | ||
+ | dev -= r * matrix[r][COLUMNS-1] * Math.pow(x,r-1); | ||
+ | } | ||
+ | return dev; | ||
+ | } | ||
+ | |||
+ | private static double extrema(double lbound,double rbound){ | ||
+ | double mid; | ||
+ | while(Math.abs(rbound-lbound)>0.0000000002){ | ||
+ | if(deverf(lbound)*deverf(mid=(rbound+lbound)*0.5) > 0) lbound=mid; | ||
+ | else rbound=mid; | ||
+ | } | ||
+ | return (lbound+rbound)*0.5; | ||
+ | } | ||
+ | |||
+ | } | ||
+ | </pre> |
Revision as of 02:07, 19 May 2009
A utility for finding polynomial approximations for a function of your choice. Will be released sometime this week.
Current feature(s):
- Any function of your choice
- Any degree polynomial of your choice
- Any interval of your choice (i.e. approximates function over [-1,1] )
Planned feature(s):
- Rational approximations
How to Use
The code is below. Simply change the top part labeled "your settings", and the program does the rest.
public class Remez { //---YOUR SETTINGS--- static double f(double x){ //THE FUNCTION TO BE APPROXIMATED return Math.sin(x); } static final int DEG = 6; //DEGREE OF THE POLYNOMIAL - MUST BE POSITIVE static final double lowx = 0d, highx = Math.PI*2; //APPROXIMATES F(X) FROM LOWX TO HIGHX //---MAIN PROGRAM CODE--- static final double RANGE = highx - lowx; static final int COLUMNS = DEG + 3; static final int ROWS = DEG + 2; static final double[] extrema = new double[ROWS]; static final double[][] matrix = new double[ROWS][COLUMNS]; public static void main(String[] args) { for(int i=0;i<ROWS;i++) extrema[i]=0.5 * (-Math.cos(i*Math.PI/(DEG + 1)) + 1) * RANGE + lowx; for(int i=0;i<20;i++) remez(); for(int i=0;i<DEG;i++) System.out.print(matrix[i][COLUMNS-1] + " + x * ("); System.out.print(matrix[DEG][COLUMNS-1]); for(int i=0;i<DEG;i++) System.out.print(")"); System.out.println("\nMax error: " + matrix[ROWS-1][COLUMNS-1]); } private static void remez(){ for(int i=0;i<ROWS;i++){ for(int j=0;j<DEG+1;j++) matrix[i][j]=Math.pow(extrema[i],j); matrix[i][DEG+1]=(i&1)==0?1d:-1d; matrix[i][DEG+2]=f(extrema[i]); } rref(matrix); extrema[0]=lowx; int z=1; for(double x=lowx+(RANGE/1000);x<=highx && z<(DEG+2);x+=(RANGE/1000)){ if(deverf(x) * deverf(x-(RANGE/1000)) < 0){ extrema[z]=extrema(x-(RANGE/1000),x); z++; } } } private static void rref(double[][] m){ int lead; double factor; for(int r=1;r<ROWS;r++){ //starting at second row lead=0; for(int i=0;i<r;i++,lead++){ factor=m[r][lead]/m[i][lead]; for(int c=lead;c<COLUMNS;c++){ m[r][c]-=factor*m[i][c]; } } for(int c=COLUMNS-1;c>=lead;c--){ m[r][c]/=m[r][lead]; } } for(int r=ROWS-2;r>=0;r--){ //starting at second last row lead=COLUMNS-2; for(int i=ROWS-1;i>r;i--,lead--){ factor=m[r][lead]; for(int c=lead;c<COLUMNS;c++){ m[r][c]-=factor*m[i][c]; } } } } private static double deverf(double x){ final double h = 0.001 * (1 + Math.abs(x)); double dev = (f(x+h) - f(x-h))/(2*h); for(int r=1;r<(ROWS-1);r++){ //constant term doesn't affect derivative dev -= r * matrix[r][COLUMNS-1] * Math.pow(x,r-1); } return dev; } private static double extrema(double lbound,double rbound){ double mid; while(Math.abs(rbound-lbound)>0.0000000002){ if(deverf(lbound)*deverf(mid=(rbound+lbound)*0.5) > 0) lbound=mid; else rbound=mid; } return (lbound+rbound)*0.5; } }