Difference between revisions of "Talk:Diamond/Version History"

From Robowiki
Jump to navigation Jump to search
(→‎One-on-one: lots of room for improvement in the gun)
Line 53: Line 53:
  
 
:: I've also been thinking about ways to make the flattener smarter, and one was by enabling it when entropy shows that it is predicting where they will shoot better than the regular hit surfing. I haven't tried it yet though. --[[User:Skilgannon|Skilgannon]] 20:33, 1 June 2009 (UTC)
 
:: I've also been thinking about ways to make the flattener smarter, and one was by enabling it when entropy shows that it is predicting where they will shoot better than the regular hit surfing. I haven't tried it yet though. --[[User:Skilgannon|Skilgannon]] 20:33, 1 June 2009 (UTC)
 +
 +
Wow, nearly 1% APS improvement with Dooki's gun, meaning more than half the difference between Diamond and Dookious lies in the gun. I guess the movement is already capable of some pretty nice PL performance, too. Exciting! --[[User:Voidious|Voidious]] 13:59, 13 July 2009 (UTC)
  
 
== MeleeRumble cruelty ==
 
== MeleeRumble cruelty ==

Revision as of 14:59, 13 July 2009

ELO inaccuracy

About "Note: Despite lower ELO, was about .3% APS better than 1.0.", that's not surprising to me at all. Glicko-2 seems to be far more true to a full-pairing APS than ELO was too. Things like this make me glad the new server doesn't just show ELO like the old one :) --Rednaxela 22:02, 17 May 2009 (UTC)

Although I had second thoughts about setting the APS as standard ranking decisor, I must agree that ELO is not as reliable as it was on the old server(s). Mind you that ELO is calculated slightly different on this server than on the old ones. --GrubbmGait 22:11, 17 May 2009 (UTC)
ELO scores have recently taken a nosedive, for several reasons. There has been a lot of new activity recently with lots of bots being updated and a few new ones added in -- that tends to shake things up. Also, several long-running bots were removed within a short time period, notably pederson.Moron which once anchored the bottom end of the scale. It's safer to compare APS instead of ELO, especially right now. --Darkcanuck 15:18, 18 May 2009 (UTC)
I only pulled Moron because it seemed fairly pointless. I don't mind if he is returned to shore up a ratings slide, but that seems like giving a cancer patient a Band-Aid. On a related note, a long time ago I got the notion that the average ELO rating of the old rating system was 1600. I dropped the ratings list in Excel and confirmed that the ratings averaged to about 1600. At the time, most people were wondering what I was smoking, dismissing 1600 as anything of relevance. I recently did another averaging of the ratings and found ELO to average at 1413 and Glicko-2 averages 1608. Dunno if it really means anything, but ELO certainly doesn't compare to the old ratings.--Martin 16:24, 18 May 2009 (UTC)

Avoiding recent enemy locations

Well, I found a bug in my risk calculation for avoiding recent enemy locations (fixed but not tuned in 1.071). I really feel like this must be a good idea (because bullets are likely to be headed to those spots), but I hadn't found any rating boost from it yet. Hopefully I can find some points in a re-tuned, bug-free version of this... --Voidious 17:25, 21 May 2009 (UTC)

1.11* bugs / fixes

Man, this Performance Enhancing Bug really drove me nuts, especially since I have so much trouble testing such a little thing. I think I can live with a .15% APS drop in my "bug-free" 1.115 (versus the "buggy" 1.111). I'm sure I'll continue tuning the randomness of his movement in the future, anyway, and I know there are more performance gains to be had elsewhere. This is long and boring, but I feel compelled to write it out, even if just to have the info "out there" somewhere.

The bug was with my random direction change timer. This timer influences the bot to reverse direction at a random interval (with a risk added for disobeying the timer). If the timer trips while the bot is moving with negative velocity, there would be a risk associated with continuing in that direction, and the bot would soon change direction towards positive velocity. Before the timer trips, there's a risk associated with reversing direction.

With the bug, once the velocity went from negative to zero (or positive), it mixed up its directions and thought that negative velocities were the safer direction. This was caused by two things: it always considered zero velocity to be the same as positive, and it was comparing the possible future heading to the heading from one tick ago (instead of heading from the current tick). So here's the problem scenario:

  • Diamond is moving with negative velocity.
  • The timer trips, so now there's a risk in continuing in this direction.
  • He begins to change direction, eventually hitting zero velocity (or, rarely, as high as +1).
  • He notices he's changed direction (because zero is the other direction) and resets the timer, meaning now there is a risk with changing direction.
  • But he compares possible movement direction against that of one tick ago, which is a negative velocity, so he thinks that way is the "same" direction.

In short, the direction changing worked fine when moving with positive velocity, but for negative velocity, it was more likely to just stop and then continue in that direction. At this point, I've just removed this timer and tuned the other randomizing factor (risk from recent locations) a bit more.

--Voidious 15:32, 26 May 2009 (UTC)

One thing at a time

The changes in 1.12 and 1.121 are a great example of why you should follow the "one change at a time" dogma. From 1.072 (best version at the time) to 1.08, I removed one thing: risk from recent enemy locations, and added another: risk factor based on damage given to enemy. 1.08 went down 0.1% APS, so I thought, "well that's barely beyond the margin of error, I'll just leave it". From 1.115 to 1.12, I restored the risk to recent enemy locations and saw a .25% APS drop. From 1.115 to 1.121, I removed the damage given risk factor and am seeing a .4% APS gain (pairings almost complete). Yay! --Voidious 18:25, 27 May 2009 (UTC)

Bah, a few more battles and it's not even above 1.115. I guess I should be patient (still only at 1,000 battles). Oh well... =) --Voidious 21:14, 27 May 2009 (UTC)

One-on-one

At least you start working with One-on-one! » Nat | Talk » 14:49, 1 June 2009 (UTC)

Just a little bit to keep myself sane. =) Melee is really hard. Spending a day on 1v1 is therapeutic because I actually know what I'm doing. =) --Voidious 14:56, 1 June 2009 (UTC)

Also, I know I've covered this topic ad nauseum already, but I just have to vent: flatteners are so evil!! They entice you with their 50+ scores against CC in the MC2K6 and then they destroy your RoboRumble rating... =) --Voidious 16:02, 1 June 2009 (UTC)

Evil?!? Not if going for PL ;) --Rednaxela 18:52, 1 June 2009 (UTC)
Yeah, yeah, that's what the devilish flattener always says! =) Just kidding, obviously I'll try to tune it better. But they sure are touchy buggers. --Voidious 19:13, 1 June 2009 (UTC)
Once you get them tuned they can actually give you points. I know on DrussGT the flattener gives a good 5 ELO points at least. The trick is putting your bot against the enemy with the lowest hitrate that you would want the flattener enabled against (Ascendant comes to mind) and then putting the threshold just a tiny bit below that. --Skilgannon 19:56, 1 June 2009 (UTC)
Yeah, I've tested removing the flattener from Dookious and it costs me points (I think it was about 5, too, not to mention killing PL score). The thresholds there are really well tuned and conservative. I'm just feeling greedy now. =) I think I'm going to try to come up with something more clever than just hit percentages (even my carefully normalized ones), like measuring the adaptation rate of the enemy gun, for enabling criteria. Turning the flattener back off when the enemy hit-% drops below the threshold (as I do in Dookious) seems silly from one perspective, because it could just mean the flattener's working, but I've always felt that permanently enabling it carried too much risk. --Voidious 20:05, 1 June 2009 (UTC)
Hmm... Normalized hitrates... I should compare those used in RougeDC's firepower selection with the ones you use for flattener enabling :) --Rednaxela 01:10, 2 June 2009 (UTC)
I tally bullets fired as normal, but bullet hits are weighted by distance and precise escape angle range. So a bullet hit from twice as far away or in a situation with twice as big a max escape angle would count as two hits. (Edit: Oh yeah, I also subtract 1 from bullets fired for onBulletHitBullet.) For my bullet power management experiment in Dookious 1.60, I normalized out the same stuff in a different way, but I didn't use precise max escape angles, because I was feeding the escape angle into a formula for testing 300 bullet powers each tick. =) --Voidious 01:31, 2 June 2009 (UTC)
I've also been thinking about ways to make the flattener smarter, and one was by enabling it when entropy shows that it is predicting where they will shoot better than the regular hit surfing. I haven't tried it yet though. --Skilgannon 20:33, 1 June 2009 (UTC)

Wow, nearly 1% APS improvement with Dooki's gun, meaning more than half the difference between Diamond and Dookious lies in the gun. I guess the movement is already capable of some pretty nice PL performance, too. Exciting! --Voidious 13:59, 13 July 2009 (UTC)

MeleeRumble cruelty

So I feel 99% certain that 1.196 is functionally equivalent to 1.183, but that's a big discrepancy: 1.196 vs 1.183. I recompiled the source I had for 1.183 for a re-release, and it's coming in somewhere between: 1.183b vs 1.183. A binary comparison of the .class files shows that they are all the same besides one which I never update, so I'm confident the source is right. The MeleeRumble is a cruel, frustrating beast... --Voidious 16:02, 10 July 2009 (UTC)

It does make a big difference score to one robot if you fight it under a set of sample robot (which exist in melee) and a battle full of ABC's, rozu's and justin's robots. Although the difference you point isn't as much as I expected. Perhaps we should have a better way to control the melee score. Perhaps we need to weight the score base on the opponent level (which can take from the ranking). But it's a work. » Nat | Talk » 17:29, 10 July 2009 (UTC)