Difference between revisions of "Kohonen Map"
Jump to navigation
Jump to search
(Hi, psudocode for you, simple code snippet to try and understand these :)) |
m |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | This is about all I can remember on how Kohonen maps work, you may tweak this if you like. Fix any bugs that keeps it from actually working in a robot, etc. | |
− | + | <syntaxhighlight> | |
+ | package chase.meh; | ||
− | + | /** | |
− | + | * This is a basic stand alone Kohonen map for use in Succubus, this allows me to worry | |
− | + | * about Kohonen Map stuff in the Kohonen Map, and robot stuff in the robot. | |
− | + | * | |
− | + | * @author Chase | |
− | + | */ | |
− | < | + | public class KohonenMap { |
− | // | + | private KohonenNode[] map; |
− | + | private int mapSize; | |
− | // | + | private long time; |
− | int | + | private double[] weights; |
− | + | ||
− | + | /** | |
− | + | * The dimensions in the dim, are only used with the neighborhood function. The true | |
− | / | + | * dimensionality that makes Kohonen Maps work is the input and output weights.<br><br> |
− | / | + | * The input weights are used to determine the BMU, while the output weights are unused |
− | + | * @param dim Sets the size of the internal map. Where the length is the number of dimensions and | |
− | + | * each index determines the size of that particular dimension. So {8,4} would initialize a 2 | |
− | + | * dimensional map, 8 wide, and 4 high. | |
+ | * @param inputL The lower range of the input weights that each node contains. The number of entries | ||
+ | * determines the number of input weights. | ||
+ | * @param inputU The upper range of the input weights that each node contains. The number of entries | ||
+ | * determines the number of input weights. | ||
+ | * @param outputL The lower range of the output weights that each node contains. The number of entries | ||
+ | * determines the number of output weights. | ||
+ | * @param outputU The upper range of the output weights that each node contains. The number of entries | ||
+ | * determines the number of output weights. | ||
+ | */ | ||
+ | public KohonenMap(int[] dim, int input, int output, double[] weight) { | ||
+ | mapSize = 1; | ||
+ | for(int i=0; i<dim.length; ++i) | ||
+ | mapSize *= dim[i]; | ||
+ | |||
+ | map = new KohonenNode[mapSize]; | ||
+ | |||
+ | //Logarithms have this thing against zero :) | ||
+ | time = 1; | ||
+ | |||
+ | weights = weight.clone(); | ||
+ | |||
+ | /** | ||
+ | * Initialize each node. | ||
+ | */ | ||
+ | int tDim[] = new int[dim.length]; | ||
+ | for(int i=0; i<mapSize; ++i) { | ||
+ | map[i] = new KohonenNode(input,output); | ||
+ | |||
+ | /** !! VERY IMPORTANT !! VERY IMPORTANT !! | ||
+ | * Here we are setting up the neighborhood, | ||
+ | * so it doesn't need to be calculated later | ||
+ | * which makes things much simpler. | ||
+ | */ | ||
+ | map[i].my_pos = tDim.clone(); | ||
+ | |||
+ | ++tDim[0]; | ||
+ | for(int j=0;j<dim.length-1;++j) { | ||
+ | if(tDim[j] >= dim[j]) { | ||
+ | tDim[j+1]++; | ||
+ | tDim[j] = 0; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | |||
+ | /** | ||
+ | * Returns the best matching unit for the given data | ||
+ | * @param input Data used to locate the BMU | ||
+ | * @return the best matching BMU for this input data | ||
+ | */ | ||
+ | public KohonenNode getBMU(double input[]) { | ||
+ | KohonenNode out = null; | ||
+ | double distance = Double.POSITIVE_INFINITY; | ||
+ | for(int i=0;i<mapSize;++i) { | ||
+ | KohonenNode n = map[i]; | ||
+ | double dist = distance(input,n.input); | ||
+ | if(dist < distance) { | ||
+ | distance = dist; | ||
+ | out = n; | ||
+ | } | ||
+ | } | ||
+ | return out; | ||
+ | } | ||
+ | |||
+ | /** | ||
+ | * Updates this KohonenMap with the given data. | ||
+ | * @param input The input data that will be updated to the map | ||
+ | * @param output The output data that will be updated to the map | ||
+ | */ | ||
+ | public void update(double input[], double output[]) { | ||
+ | KohonenNode bmu = getBMU(input); | ||
+ | for(int i=0;i<mapSize;++i) { | ||
+ | map[i].update(bmu.my_pos, input, output); | ||
+ | } | ||
+ | ++time; | ||
+ | } | ||
+ | |||
+ | /** | ||
+ | * Sets the internal time used for weighting the update data by time. | ||
+ | * The internal time automatically gets incremented with each update, | ||
+ | * calling this is unnecessary. | ||
+ | * @param time | ||
+ | */ | ||
+ | public void setTime(long time) { | ||
+ | if(time < 1) time = 1; | ||
+ | this.time = time; | ||
+ | } | ||
+ | |||
+ | public long getTime() { | ||
+ | return this.time; | ||
+ | } | ||
− | + | /** | |
− | + | * This is a KohonenNode, it just contains the data | |
− | + | * @author Chase | |
− | + | */ | |
− | + | public class KohonenNode { | |
− | + | /** this is the location of this node in the neighborhood. */ | |
− | + | private int[] my_pos; | |
− | + | ||
− | // | + | public double[] input; |
− | / | + | public double[] output; |
− | + | ||
− | + | /** | |
− | + | * @param inputL The lower range of the input weights that this node contains. The number of entries | |
− | + | * determines the number of input weights. | |
− | } | + | * @param inputU The upper range of the input weights that this node contains. The number of entries |
− | + | * determines the number of input weights. | |
− | + | * @param outputL The lower range of the output weights that this node contains. The number of entries | |
− | + | * determines the number of output weights. | |
− | + | * @param outputU The upper range of the output weights that this node contains. The number of entries | |
− | + | * determines the number of output weights. | |
− | + | */ | |
− | + | public KohonenNode(int inputs, int outputs) { | |
− | + | input = new double[inputs]; | |
− | + | output = new double[outputs]; | |
− | + | ||
− | + | /** !! VERY IMPORTANT !! VERY IMPORTANT !! | |
− | + | * Randomize the startup data | |
− | + | */ | |
+ | for(int i=0;i<input.length;++i) { | ||
+ | input[i] = (Math.random()-0.5)*2.0; | ||
+ | } | ||
+ | for(int i=0;i<output.length;++i) { | ||
+ | output[i] = (Math.random()-0.5)*2.0; | ||
+ | } | ||
+ | } | ||
+ | |||
+ | |||
+ | private double gaussian(double u) { | ||
+ | /** This normalizes it so that 0 = 1 */ | ||
+ | final double oos2p = (1.0/Math.sqrt(2.0*Math.PI)); | ||
+ | return oos2p*Math.exp(-0.5*u*u); | ||
+ | } | ||
+ | |||
+ | private double weight(double current, double target, double neighborhood, double time) { | ||
+ | return current + neighborhood * time * (target - current); | ||
+ | } | ||
+ | |||
+ | private void update(int[] bmu, double input[], double output[]) { | ||
+ | double distance = neighborDistance(my_pos,bmu); | ||
+ | //double neighborhood = Math.exp(-(distance*distance)); | ||
+ | double neighborhood = gaussian(distance); | ||
+ | double timeFunc = 1.0/(Math.log(time)+0.01); | ||
+ | //double timeFunc = Math.exp(-(time*time)/2.0); | ||
+ | |||
+ | /** Beyond this point its benefit is negligible. */ | ||
+ | //if(neighborhood*timeFunc < 0.001) return; | ||
+ | if(distance > 4) return; | ||
+ | |||
+ | /** Update the input and output weights */ | ||
+ | for(int i=0;i<input.length;++i) { | ||
+ | this.input[i] = weight(this.input[i], input[i], neighborhood, timeFunc); | ||
+ | } | ||
+ | for(int i=0;i<output.length;++i) { | ||
+ | this.output[i] = weight(this.output[i], output[i], neighborhood, timeFunc); | ||
+ | } | ||
} | } | ||
} | } | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | // | + | /** |
− | + | * The weight distance function. | |
− | + | */ | |
− | + | public double distance(double[] p, double[] q) { | |
− | + | if(p == null || q == null) return Double.POSITIVE_INFINITY; | |
− | + | double k, d = 0; | |
− | + | for(int i = 0; i < p.length; i++) { | |
− | + | k = p[i] - q[i]; | |
− | / | + | d += k*k*weights[i]; |
− | + | } | |
− | + | return d; | |
− | + | } | |
− | + | /** | |
− | + | * The neighborhood distance function. | |
− | + | */ | |
− | + | public static final double neighborDistance(int[] p, int[] q) { | |
− | + | double k, d = 0; | |
− | + | for(int i = 0; i < p.length; i++) { | |
− | + | k = p[i] - q[i]; | |
− | + | d += k*k; | |
− | + | } | |
+ | return d; | ||
} | } | ||
} | } | ||
− | + | </syntaxhighlight> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ |
Latest revision as of 01:50, 6 December 2011
This is about all I can remember on how Kohonen maps work, you may tweak this if you like. Fix any bugs that keeps it from actually working in a robot, etc.
package chase.meh;
/**
* This is a basic stand alone Kohonen map for use in Succubus, this allows me to worry
* about Kohonen Map stuff in the Kohonen Map, and robot stuff in the robot.
*
* @author Chase
*/
public class KohonenMap {
private KohonenNode[] map;
private int mapSize;
private long time;
private double[] weights;
/**
* The dimensions in the dim, are only used with the neighborhood function. The true
* dimensionality that makes Kohonen Maps work is the input and output weights.<br><br>
* The input weights are used to determine the BMU, while the output weights are unused
* @param dim Sets the size of the internal map. Where the length is the number of dimensions and
* each index determines the size of that particular dimension. So {8,4} would initialize a 2
* dimensional map, 8 wide, and 4 high.
* @param inputL The lower range of the input weights that each node contains. The number of entries
* determines the number of input weights.
* @param inputU The upper range of the input weights that each node contains. The number of entries
* determines the number of input weights.
* @param outputL The lower range of the output weights that each node contains. The number of entries
* determines the number of output weights.
* @param outputU The upper range of the output weights that each node contains. The number of entries
* determines the number of output weights.
*/
public KohonenMap(int[] dim, int input, int output, double[] weight) {
mapSize = 1;
for(int i=0; i<dim.length; ++i)
mapSize *= dim[i];
map = new KohonenNode[mapSize];
//Logarithms have this thing against zero :)
time = 1;
weights = weight.clone();
/**
* Initialize each node.
*/
int tDim[] = new int[dim.length];
for(int i=0; i<mapSize; ++i) {
map[i] = new KohonenNode(input,output);
/** !! VERY IMPORTANT !! VERY IMPORTANT !!
* Here we are setting up the neighborhood,
* so it doesn't need to be calculated later
* which makes things much simpler.
*/
map[i].my_pos = tDim.clone();
++tDim[0];
for(int j=0;j<dim.length-1;++j) {
if(tDim[j] >= dim[j]) {
tDim[j+1]++;
tDim[j] = 0;
}
}
}
}
/**
* Returns the best matching unit for the given data
* @param input Data used to locate the BMU
* @return the best matching BMU for this input data
*/
public KohonenNode getBMU(double input[]) {
KohonenNode out = null;
double distance = Double.POSITIVE_INFINITY;
for(int i=0;i<mapSize;++i) {
KohonenNode n = map[i];
double dist = distance(input,n.input);
if(dist < distance) {
distance = dist;
out = n;
}
}
return out;
}
/**
* Updates this KohonenMap with the given data.
* @param input The input data that will be updated to the map
* @param output The output data that will be updated to the map
*/
public void update(double input[], double output[]) {
KohonenNode bmu = getBMU(input);
for(int i=0;i<mapSize;++i) {
map[i].update(bmu.my_pos, input, output);
}
++time;
}
/**
* Sets the internal time used for weighting the update data by time.
* The internal time automatically gets incremented with each update,
* calling this is unnecessary.
* @param time
*/
public void setTime(long time) {
if(time < 1) time = 1;
this.time = time;
}
public long getTime() {
return this.time;
}
/**
* This is a KohonenNode, it just contains the data
* @author Chase
*/
public class KohonenNode {
/** this is the location of this node in the neighborhood. */
private int[] my_pos;
public double[] input;
public double[] output;
/**
* @param inputL The lower range of the input weights that this node contains. The number of entries
* determines the number of input weights.
* @param inputU The upper range of the input weights that this node contains. The number of entries
* determines the number of input weights.
* @param outputL The lower range of the output weights that this node contains. The number of entries
* determines the number of output weights.
* @param outputU The upper range of the output weights that this node contains. The number of entries
* determines the number of output weights.
*/
public KohonenNode(int inputs, int outputs) {
input = new double[inputs];
output = new double[outputs];
/** !! VERY IMPORTANT !! VERY IMPORTANT !!
* Randomize the startup data
*/
for(int i=0;i<input.length;++i) {
input[i] = (Math.random()-0.5)*2.0;
}
for(int i=0;i<output.length;++i) {
output[i] = (Math.random()-0.5)*2.0;
}
}
private double gaussian(double u) {
/** This normalizes it so that 0 = 1 */
final double oos2p = (1.0/Math.sqrt(2.0*Math.PI));
return oos2p*Math.exp(-0.5*u*u);
}
private double weight(double current, double target, double neighborhood, double time) {
return current + neighborhood * time * (target - current);
}
private void update(int[] bmu, double input[], double output[]) {
double distance = neighborDistance(my_pos,bmu);
//double neighborhood = Math.exp(-(distance*distance));
double neighborhood = gaussian(distance);
double timeFunc = 1.0/(Math.log(time)+0.01);
//double timeFunc = Math.exp(-(time*time)/2.0);
/** Beyond this point its benefit is negligible. */
//if(neighborhood*timeFunc < 0.001) return;
if(distance > 4) return;
/** Update the input and output weights */
for(int i=0;i<input.length;++i) {
this.input[i] = weight(this.input[i], input[i], neighborhood, timeFunc);
}
for(int i=0;i<output.length;++i) {
this.output[i] = weight(this.output[i], output[i], neighborhood, timeFunc);
}
}
}
/**
* The weight distance function.
*/
public double distance(double[] p, double[] q) {
if(p == null || q == null) return Double.POSITIVE_INFINITY;
double k, d = 0;
for(int i = 0; i < p.length; i++) {
k = p[i] - q[i];
d += k*k*weights[i];
}
return d;
}
/**
* The neighborhood distance function.
*/
public static final double neighborDistance(int[] p, int[] q) {
double k, d = 0;
for(int i = 0; i < p.length; i++) {
k = p[i] - q[i];
d += k*k;
}
return d;
}
}