Difference between revisions of "User:Chase-san/GeomTools"
Jump to navigation
Jump to search
m |
m |
||
Line 285: | Line 285: | ||
} | } | ||
} | } | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | New Geometry Tools | ||
+ | <syntaxhighlight> | ||
+ | public static final double[] intersectRectCircle( | ||
+ | double rx, double ry, double rw, double rh, | ||
+ | double cx, double cy, double r) { | ||
+ | double mx = rx+rw; | ||
+ | double my = ry+rh; | ||
+ | |||
+ | //every line can intersect twice, meaning 4 points at most per line | ||
+ | double[] intersect = new double[16]; | ||
+ | int n = 0; | ||
+ | |||
+ | double[] in = intersectSegCircle(cx,cy,r,rx,ry,mx,ry); //top | ||
+ | for(int i=0;i!=in.length;++i) | ||
+ | intersect[n++] = in[i]; | ||
+ | |||
+ | in = intersectSegCircle(cx,cy,r,rx,my,mx,my); //bottom | ||
+ | for(int i=0;i!=in.length;++i) | ||
+ | intersect[n++] = in[i]; | ||
+ | |||
+ | in = intersectSegCircle(cx,cy,r,rx,ry,rx,my); //left | ||
+ | for(int i=0;i!=in.length;++i) | ||
+ | intersect[n++] = in[i]; | ||
+ | |||
+ | in = intersectSegCircle(cx,cy,r,mx,ry,mx,my); //right | ||
+ | for(int i=0;i!=in.length;++i) | ||
+ | intersect[n++] = in[i]; | ||
+ | |||
+ | double[] output = new double[n]; | ||
+ | for(int i=0;i!=n;++i) | ||
+ | output[i] = intersect[i]; | ||
+ | |||
+ | return output; | ||
+ | } | ||
+ | |||
+ | public static final double[] intersectSegCircle(double cx, double cy, double r, | ||
+ | double lax, double lay, double lbx, double lby) { | ||
+ | |||
+ | double diffx = cx - lax; | ||
+ | double diffy = cy - lay; | ||
+ | |||
+ | double dirx = lbx-lax; | ||
+ | double diry = lby-lay; | ||
+ | double l = Math.sqrt(dirx*dirx + diry*diry); | ||
+ | |||
+ | dirx /= l; | ||
+ | diry /= l; | ||
+ | |||
+ | double a0 = diffx*diffx+diffy*diffy - r*r; | ||
+ | double a1 = diffx*dirx+diffy*diry; | ||
+ | |||
+ | double discr = a1 * a1 - a0; | ||
+ | |||
+ | if (discr > 0) { | ||
+ | /* The circle and line meet at two places */ | ||
+ | double lengthSq = (lbx-lax)*(lbx-lax)+(lby-lay)*(lby-lay); | ||
+ | |||
+ | discr = Math.sqrt(discr); | ||
+ | double m1 = a1 - discr; | ||
+ | double m2 = a1 + discr; | ||
+ | |||
+ | if(m1 > 0 && m1*m1 < lengthSq && m2 > 0 && m2*m2 < lengthSq) { | ||
+ | return new double[] { | ||
+ | lax + m1 * dirx, lay + m1 * diry, | ||
+ | lax + m2 * dirx, lay + m2 * diry | ||
+ | }; | ||
+ | } else if (m1 > 0 && m1*m1 < lengthSq) { | ||
+ | return new double[] { | ||
+ | lax + m1 * dirx, lay + m1 * diry | ||
+ | }; | ||
+ | } else if (m2 > 0 && m2*m2 < lengthSq) { | ||
+ | return new double[] { | ||
+ | lax + m2 * dirx, lay + m2 * diry | ||
+ | }; | ||
+ | } | ||
+ | } else if (discr == 0) { | ||
+ | double lengthSq = (lbx-lax)*(lbx-lax)+(lby-lay)*(lby-lay); | ||
+ | /* We have ourselves a tangent */ | ||
+ | if (a1 > 0 && a1*a1 < lengthSq) { | ||
+ | return new double[] { | ||
+ | lax+a1*dirx, lay+a1*diry | ||
+ | }; | ||
+ | } | ||
+ | } | ||
+ | |||
+ | return new double[0]; | ||
+ | } | ||
</syntaxhighlight> | </syntaxhighlight> |
Latest revision as of 17:18, 9 August 2011
My set of geometry based tools.
import java.awt.geom.*;
import java.util.ArrayList;
/**
* I honestly wrote all these from scratch!
*
* @author Chase
*/
public final class GeomTools {
private GeomTools() {}
public static final Line2D[] rectToLines(Rectangle2D rect) {
Line2D[] lines = new Line2D[4];
//Left, Right, Bottom, Top
lines[0] = new Line2D.Double(rect.getMinX(),rect.getMinY(),rect.getMinX(),rect.getMaxY());
lines[1] = new Line2D.Double(rect.getMaxX(),rect.getMinY(),rect.getMaxX(),rect.getMaxY());
lines[2] = new Line2D.Double(rect.getMinX(),rect.getMinY(),rect.getMaxX(),rect.getMinY());
lines[3] = new Line2D.Double(rect.getMinX(),rect.getMaxY(),rect.getMaxX(),rect.getMaxY());
return lines;
}
/**
* Gets intersections between a rectangle and a line
* @param rect Rectangle
* @param line Line
* @return The points that it intesects with, or a zero length array if
* no intersections occur.
*/
public static final Point2D[] intersectRectLine(Rectangle2D rect, Line2D line) {
ArrayList<Point2D> points = new ArrayList<Point2D>();
Line2D[] r = rectToLines(rect);
for(Line2D edge : r) {
Point2D sec = intersectSegLine(edge, line);
if(sec != null)
points.add(sec);
}
Point2D[] ps = new Point2D[points.size()];
points.toArray(ps);
return ps;
}
/**
* Gets intersections between a rectangle and a line
* @param rect Rectangle
* @param line Line
* @return The points that it intesects with, or a zero length array if
* no intersections occur.
*/
public static final Point2D[] intersectRectCircle(Rectangle2D rect, Point2D c, double r) {
ArrayList<Point2D> points = new ArrayList<Point2D>();
Line2D[] rct = rectToLines(rect);
for(Line2D edge : rct) {
Point2D sec[] = intersectCircleSeg(c, r, edge);
for(Point2D p : sec)
points.add(p);
}
Point2D[] ps = new Point2D[points.size()];
points.toArray(ps);
return ps;
}
/**
* Gets intersections between a rectangle and a line segment
* @param rect Rectangle
* @param line Line Segment
* @return The points that it intesects with, or a zero length array if
* no intersections occur.
*/
public static final Point2D[] intersectRectSeg(Rectangle2D rect, Line2D line) {
ArrayList<Point2D> points = new ArrayList<Point2D>();
Line2D[] r = rectToLines(rect);
for(Line2D edge : r) {
Point2D sec = intersectSegSeg(edge, line);
if(sec != null) {
points.add(sec);
}
}
Point2D[] ps = new Point2D[points.size()];
points.toArray(ps);
return ps;
}
public static final Point2D intersectLineLine(Line2D p1, Line2D p2) {
double dom = (p2.getY2()-p2.getY1())*(p1.getX2()-p1.getX1())
-(p2.getX2()-p2.getX1())*(p1.getY2()-p1.getY1());
double ua = (p2.getX2()-p2.getX1())*(p1.getY1()-p2.getY1())
-(p2.getY2()-p2.getY1())*(p1.getX1()-p2.getX1());
//If dom is 0 then they are parallel
if(Math.abs(dom) < 0.0001)
return null;
ua /= dom;
Point2D P = new Point2D.Double(
p1.getX1() + ua*(p1.getX2()-p1.getX1()),
p1.getY1() + ua*(p1.getY2()-p1.getY1()));
return P;
}
public static final Point2D intersectLineSeg(Line2D p1, Line2D p2) {
double dom = (p2.getY2()-p2.getY1())*(p1.getX2()-p1.getX1())
-(p2.getX2()-p2.getX1())*(p1.getY2()-p1.getY1());
double ub = (p1.getX2()-p1.getX1())*(p1.getY1()-p2.getY1())
-(p1.getY2()-p1.getY1())*(p1.getX1()-p2.getX1());
//If dom is 0 then they are parallel
//If ua and ub are also 0, then they are coincident
if(Math.abs(dom) < 0.0001)
return null;
ub /= dom;
if(ub >= 0.0 && ub <= 1.0) {
Point2D P = new Point2D.Double(
p1.getX1() + ub*(p1.getX2()-p1.getX1()),
p1.getY1() + ub*(p1.getY2()-p1.getY1()));
return P;
}
return null;
}
public static final Point2D intersectSegLine(Line2D p1, Line2D p2) {
double dom = (p2.getY2()-p2.getY1())*(p1.getX2()-p1.getX1())
-(p2.getX2()-p2.getX1())*(p1.getY2()-p1.getY1());
double ua = (p2.getX2()-p2.getX1())*(p1.getY1()-p2.getY1())
-(p2.getY2()-p2.getY1())*(p1.getX1()-p2.getX1());
//If dom is 0 then they are parallel
//If ua and ub are also 0, then they are coincident
if(Math.abs(dom) < 0.0001)
return null;
ua /= dom;
if(ua >= 0.0 && ua <= 1.0) {
Point2D P = new Point2D.Double(
p1.getX1() + ua*(p1.getX2()-p1.getX1()),
p1.getY1() + ua*(p1.getY2()-p1.getY1()));
return P;
}
return null;
}
public static final Point2D intersectSegSeg(Line2D p1, Line2D p2) {
double dom = (p2.getY2()-p2.getY1())*(p1.getX2()-p1.getX1())
-(p2.getX2()-p2.getX1())*(p1.getY2()-p1.getY1());
double ua = (p2.getX2()-p2.getX1())*(p1.getY1()-p2.getY1())
-(p2.getY2()-p2.getY1())*(p1.getX1()-p2.getX1());
double ub = (p1.getX2()-p1.getX1())*(p1.getY1()-p2.getY1())
-(p1.getY2()-p1.getY1())*(p1.getX1()-p2.getX1());
//If dom is 0 then they are parallel
//If ua and ub are also 0, then they are coincident
if(Math.abs(dom) < 0.0001)
return null;
ua /= dom;
ub /= dom;
if(ua >= 0.0 && ua <= 1.0
&& ub >= 0.0 && ub <= 1.0) {
Point2D P = new Point2D.Double(
p1.getX1() + ua*(p1.getX2()-p1.getX1()),
p1.getY1() + ua*(p1.getY2()-p1.getY1()));
return P;
}
return null;
}
public static final Point2D[] intersectCircleLine(Point2D c, double r, Line2D p1) {
double dx = c.getX() - p1.getX1();
double dy = c.getY() - p1.getY1();
double dirx = p1.getX2() - p1.getX1();
double diry = p1.getY2() - p1.getY1();
double a0 = Math.sqrt(dirx*dirx+diry*diry);
dirx /= a0;
diry /= a0;
a0 = dx*dx + dy*dy - r*r;
double a1 = dx*dirx + dy*diry;
double discr = a1*a1 - a0;
double m1 = 0;
double m2 = 0;
if (discr > 0) {
discr = Math.sqrt(discr);
m1 = a1 - discr;
m2 = a1 + discr;
return new Point2D[]{
new Point2D.Double( p1.getX1() + m1*dirx, p1.getY1() + m1*diry ),
new Point2D.Double( p1.getX1() + m2*dirx, p1.getY1() + m2*diry )
};
} else if(discr == 0) {
m1 = a1;
return new Point2D[]{
new Point2D.Double( p1.getX1() + m1*dirx, p1.getY1() + m1*diry )
};
}
return new Point2D[0];
}
public static final Point2D[] intersectCircleSeg(Point2D c, double r, Line2D p1) {
double dx = c.getX() - p1.getX1();
double dy = c.getY() - p1.getY1();
double dirx = p1.getX2() - p1.getX1();
double diry = p1.getY2() - p1.getY1();
double a0 = Math.sqrt(dirx*dirx+diry*diry);
dirx /= a0;
diry /= a0;
double length = p1.getP1().distance(p1.getP2());
a0 = dx*dx + dy*dy - r*r;
double a1 = dx*dirx + dy*diry;
double discr = a1*a1 - a0;
double m1 = 0;
double m2 = 0;
if (discr > 0) {
discr = Math.sqrt(discr);
m1 = a1 - discr;
m2 = a1 + discr;
if(m1 > 0 && m1 < length && m2 > 0 && m2 < length)
return new Point2D[]{
new Point2D.Double( p1.getX1() + m1*dirx, p1.getY1() + m1*diry ),
new Point2D.Double( p1.getX1() + m2*dirx, p1.getY1() + m2*diry )
};
else if(m1 > 0 && m1 < length)
return new Point2D[]{
new Point2D.Double( p1.getX1() + m1*dirx, p1.getY1() + m1*diry ),
};
else if(m2 > 0 && m2 < length)
return new Point2D[]{
new Point2D.Double( p1.getX1() + m2*dirx, p1.getY1() + m2*diry ),
};
} else if(discr == 0) {
//Its a tangent
m1 = a1;
if(m1 > 0 && m1 < length)
return new Point2D[]{
new Point2D.Double( p1.getX1() + m1*dirx, p1.getY1() + m1*diry )
};
}
return new Point2D[0];
}
public static final boolean testCircle(Point2D s1, double r1, Point2D s2, double r2) {
return s1.distanceSq(s2) < r1*r1+r2*r2;
}
/**
* Tests two moving circles, with directional vectors <s1x,s1y> and <s2x,s2y>
*/
public static final boolean testCircle(Point2D s1, double r1, Point2D s2, double r2,
double s1x, double s1y, double s2x, double s2y, int time) {
double rVx = s1x - s2x;
double rVy = s1y - s2y;
double a = rVx*rVx + rVy*rVy;
double dx = s1.getX() - s2.getX();
double dy = s1.getY() - s2.getY();
double c = dx*dx+dy*dy;
double rSum = r1 + r2;
double rSumSqr = rSum * rSum;
if(a > 0.0) {
double b = dx*rVx+dy*rVy;
if(b <= 0.0) {
if(-time * a <= b)
return a * c - b * b <= a * rSumSqr;
return time * (time * a + 2.0 * b) + c <= rSumSqr;
}
}
return c <= rSumSqr;
}
public static final Point2D[] getCorners(Rectangle2D rect) {
Point2D[] corner = new Point2D[4];
corner[0] = new Point2D.Double(rect.getMinX(),rect.getMinY());
corner[1] = new Point2D.Double(rect.getMinX(),rect.getMaxY());
corner[2] = new Point2D.Double(rect.getMaxX(),rect.getMinY());
corner[3] = new Point2D.Double(rect.getMaxX(),rect.getMaxY());
return corner;
}
public static final Point2D between(Point2D p1, Point2D p2) {
double x = p1.getX() + p2.getX();
double y = p1.getY() + p2.getY();
return new Point2D.Double(x/2.0,y/2.0);
}
}
New Geometry Tools
public static final double[] intersectRectCircle(
double rx, double ry, double rw, double rh,
double cx, double cy, double r) {
double mx = rx+rw;
double my = ry+rh;
//every line can intersect twice, meaning 4 points at most per line
double[] intersect = new double[16];
int n = 0;
double[] in = intersectSegCircle(cx,cy,r,rx,ry,mx,ry); //top
for(int i=0;i!=in.length;++i)
intersect[n++] = in[i];
in = intersectSegCircle(cx,cy,r,rx,my,mx,my); //bottom
for(int i=0;i!=in.length;++i)
intersect[n++] = in[i];
in = intersectSegCircle(cx,cy,r,rx,ry,rx,my); //left
for(int i=0;i!=in.length;++i)
intersect[n++] = in[i];
in = intersectSegCircle(cx,cy,r,mx,ry,mx,my); //right
for(int i=0;i!=in.length;++i)
intersect[n++] = in[i];
double[] output = new double[n];
for(int i=0;i!=n;++i)
output[i] = intersect[i];
return output;
}
public static final double[] intersectSegCircle(double cx, double cy, double r,
double lax, double lay, double lbx, double lby) {
double diffx = cx - lax;
double diffy = cy - lay;
double dirx = lbx-lax;
double diry = lby-lay;
double l = Math.sqrt(dirx*dirx + diry*diry);
dirx /= l;
diry /= l;
double a0 = diffx*diffx+diffy*diffy - r*r;
double a1 = diffx*dirx+diffy*diry;
double discr = a1 * a1 - a0;
if (discr > 0) {
/* The circle and line meet at two places */
double lengthSq = (lbx-lax)*(lbx-lax)+(lby-lay)*(lby-lay);
discr = Math.sqrt(discr);
double m1 = a1 - discr;
double m2 = a1 + discr;
if(m1 > 0 && m1*m1 < lengthSq && m2 > 0 && m2*m2 < lengthSq) {
return new double[] {
lax + m1 * dirx, lay + m1 * diry,
lax + m2 * dirx, lay + m2 * diry
};
} else if (m1 > 0 && m1*m1 < lengthSq) {
return new double[] {
lax + m1 * dirx, lay + m1 * diry
};
} else if (m2 > 0 && m2*m2 < lengthSq) {
return new double[] {
lax + m2 * dirx, lay + m2 * diry
};
}
} else if (discr == 0) {
double lengthSq = (lbx-lax)*(lbx-lax)+(lby-lay)*(lby-lay);
/* We have ourselves a tangent */
if (a1 > 0 && a1*a1 < lengthSq) {
return new double[] {
lax+a1*dirx, lay+a1*diry
};
}
}
return new double[0];
}