Difference between revisions of "Wiki Targeting/Code"
Jump to navigation
Jump to search
(migrating from old wiki) |
RednaxelaBot (talk | contribs) m (Using <syntaxhighlight>.) |
||
Line 25: | Line 25: | ||
==== Pseudocode ==== | ==== Pseudocode ==== | ||
− | < | + | <syntaxhighlight> |
Class MyRobot | Class MyRobot | ||
{ | { | ||
Line 381: | Line 381: | ||
} | } | ||
} | } | ||
− | </ | + | </syntaxhighlight> |
[[Category:Source Code]] | [[Category:Source Code]] |
Latest revision as of 09:32, 1 July 2010
- Sub-pages:
- Wiki Targeting - Dynamic Segmentation - Code - Archived Talk 20090501
Schematics
+----------------------------------------------------------------+ | MyRobot ------ Node ------ Leaf ------ Bin | | \ \ \ | | \ \ ----- Log -----< Observation | | \ \ | | | \ \ Situation | | \ \ | | \ - Splitter ------< Node(recursive) | | \ | | Recursionlevel | +----------------------------------------------------------------+
Pseudocode
Class MyRobot
{
Node root = new Node();
RecursionLevel level = new Recursionlevel();
processWave()
{
Observation o = new Observation(Situation s, int GuessFactor);
level.reset();
root.addObservation(o, level);
}
getGuessFactor(Situation s)
{
level.reset();
root.getGuessFactor(s, level);
}
}
Class Node
{
Leaf leaf = new Leaf();
Splitter splitter = null;
int getGuessFactor(Situation s, RecursionLevel level, double Distance)
{
if(leaf==null)
{
return Splitter.getGuessFactor(s, level) //this node is not a leaf. continue recursion.
}
else
{
return leaf.getGuessFactor(Distance)
}
}
addObservation(Observation o, RecursionLevel level)
{
if(leaf==null)
{
Splitter.addObservation(o, level) //this node is not a leaf. continue recursion.
}
else
{
Leaf.add(o);
if(leaf.size() >= 40)
{
if(splitter == null) splitter = new Splitter();
if(splitter.split(leaf, level)) //splitter.split returns true if successful
{
// this nodes is no longer a leaf node. save memory space by deleting unused objects
leaf.discard();
leaf = null;
}
}
}
}
getPeakFactor()
{
return leaf.getPeakFactor();
}
clear()
{
leaf.clear();
}
}
Class RecursionLevel
{
int level;
int min[numDimensions]; //inclusive
int max[numDimensions]; //exclusive
reset()
{
level = o;
for(i=0;i<numDimensions;i++)
{
min[i] = 0;
max[i] = 127;
}
}
getSplitValue(int SplitDimension)
{
return (min[SplitDimension] + max[SplitDimension]) / 2.0D;
}
branchLow (int SplitDimension)
{
max[SplitDimension] = getSplitValue(SplitDimension);
}
branchHigh (int SplitDimension)
{
min[SplitDimension] = getSplitValue(SplitDimension);
}
}
Class Leaf
{
Log log = new Log();
Bin nodeBin = new Bin();
int getGuessFactor(double Distance)
{
nodeBin.findBestIndex(Distance);
}
add(Observation o)
{
log.add(o);
nodeBin.add(o.getGF());
}
getPeakFactor()
{
double Distance = log.getAverageDistance(); //assume the distance is the average distance of all observations
return nodeBin.getPeakFactor(Distance);
}
int size()
{
return log.size();
}
discard()
{
log = null;
nodeBin = null;
}
clear()
{
log.clear();
nodeBin.clear();
}
}
Class Splitter
{
Node LChild = new Node();
Node HChild = new Node();
int SplitDimension;
int getGuessFactor(Situation s, Recursionlevel level)
{
if(s.getDimension(SplitDimension) < level.getSplitValue(SplitDimension))
{
level.diveLow(SplitDimension);
LChild.getGuessFactor(s, level);
}
else
{
level.diveHigh(SplitDimension);
HChild.getGuessFactor(s, level);
}
}
addObservation(Observation o, Recursionlevel level)
{
if(o.getDimension(SplitDimension) < level.getSplitValue(SplitDimension))
{
level.diveLow(SplitDimension);
LChild.addObservation(o, level);
}
else
{
level.diveHigh(SplitDimension);
HChild.addObservation(o, level);
}
}
spawnChildren(List Log, int Dimension, int SplitValue, Node LChild, Node HChild)
{
for(j=0;j<Log.size();j++)
{
Observation o = Log.get(j);
if(o.getDimension(i) < SplitValue)
{
L.addObservation(o);
}
else
{
H.addObservation(o);
}
}
}
boolean split(Leaf parent, Recursionlevel level) //this function is called by the Node when it has enough Observations to justify splitting the Node up.
{
int BestPeakTotal = parent.getPeakFactor(); //children need to exceed parent's peak factor
int BestDim = -1;
int SplitValue;
for(i=0; i<numDimensions; i++) //iterate over all dimensions and remember the most efficient dimension for splitting
{
SplitValue = level.getSplitValue(i);
spawnChildren(parent.Log, i, SplitValue, LChild, HChild); //temporarily split the parent log into two child nodes
if((LChild.getPeakFactor() + HChild.getPeakFactor()) > BestPeakTotal) //check how this split performs
{
BestDim = i;
BestPeakTotal = LChild.getPeakFactor() + HChild.getPeakFactor();
}
LChild.clear();
HChild.clear();
}
If(BestDim > -1) //if a good splitting dimension is found, make it permanent
{
SplitDimension = BestDim;
SplitValue = level.getSplitValue(SplitDimension);
spawnChildren(parent.Log, SplitDimension, SplitValue, LChild, HChild); //permanently split the parent log into two child nodes
return true;
}
else
{
return false;
}
}
}
Class Bin
{
numBins = 75;
int bin[numBins];
add (int GF)
{
bin[GF]++;
}
clear()
{
for(i=0; i<numBins; i++)
{
bin[i] = 0;
}
}
int calcBotwidth()
{
//formula see Locke, botwidth is half the bot's width, expressed in GF indices
}
getPeakFactor(double Distance)
{
//first find the best index, considering bot width
int botwidth = calcBotwidth(Distance);
int index = findBestIndex(botwidth);
//then, using this index, count the pure visits, considering bot width
int PeakFactor = 0;
for(i=(index-botwidth+1);i<(index+botwidth);i++)
{
if(i<0) i=0;
if(i>=numBins) i=numBins;
PeakFactor += bin[i];
}
}
int findBestIndex(double Distance)
{
int botwidth = calcBotwidth(Distance);
int specialbin[numBins];
for(index=0; index<numBins; index++)
{
int imin = index-botwidth+1;
if(imin<0) imin=0;
int imax = index+botwidth;
if(imax>=numBins) imax=numBins-1;
for(i=imin;i<imax;i++)
{
specialbin[index] += bin[i];
}
}
int bestIndex=0;
int bestValue=0;
for(index=0; index<numBins; index++)
{
if(bestValue < specialbin[index])
{
bestIndex = index;
bestValue = specialbin[index];
}
}
/*
TO DO: IN CASE OF "PLATEAU" FIND MIDDLE INDEX. SEE LOCKE FOR CODE.
*/
return bestIndex;
}
}
Class Log
{
List Log = new List();
add(Observation o)
{
Log.add(o);
}
Observation get(int index)
{
return (Observation)Log.get(index);
}
int size()
{
return Log.size();
}
double getAverageDistance()
{
int Total, Counter;
for(i=0; i<size(); i++)
{
COunter++;
Total += (get(i)).getDimension(x); //x = dimension that represents distance
}
return (double)Total / (double)Counter;
}
}
Class Observation
{
Situation s;
int GuessFactor;
getGF()
{
return GuessFactor;
}
getDimension(int d)
{
return s.getDimension(d);
}
}
Class Situation
{
int Dimensions[numDimensions];
getDimension(int d)
{
return Dimensions[d];
}
}