Dynamic Reweighting
← Thread:Talk:Dynamic Clustering/Dynamic Reweighting/reply
In a gun, the easiest way would be having many sets of weights and put them all in a virtual gun array. But if all the sets perform similar to each other, the virtual gun will not be able to pick the optimal one due to noise.
And flatteners actively try to screw up most statistics, including virtual gun scores.
You do not have permission to edit this page, for the following reasons:
You can view and copy the source of this page.
Return to Thread:Talk:Dynamic Clustering/Dynamic Reweighting/reply (2).
Based on information from you and others who say that weights on predictors other than data decay have very little effect on performance, the method I described might only be useful for adjusting your data decay in an anti surfer gun. However, it might also allow you to add more specialized predictors which started at weights of zero and were only used if found to be relevant. For example, what if you found that looking at some statistic of the past 5 GFs a bot goes to helps against bots using flatteners, but not at all against anything else. Adding this to a statically weighted gun would probably decrease performance against everyone but opponents using flatteners. I might use WaveSim when I'm working on an anti non adaptive targeting system.