Performance?

Jump to navigation Jump to search

I completely agree with you. But i think, that r-tree is faster with RS, but kD-tree is faster with kNN

Jdev05:32, 22 December 2011

You do not have permission to edit this page, for the following reasons:

  • The action you have requested is limited to users in the group: Users.
  • You must confirm your email address before editing pages. Please set and validate your email address through your user preferences.

You can view and copy the source of this page.

Return to Thread:User talk:Jdev/Code/R Tree/Performance?/reply (8).

 

I think that range searches would definitely be faster using R-trees. In a range search, you could add every point within the rectangle of an R-tree without calculating any distances for those points. Of course, your tree uses minimum bounding rectangles so you could do that too, but a normal kd-tree couldn't. For a kNN search the main advantage of an R-tree is probably the ease with which you can rebalance the tree.

AW17:53, 22 December 2011

Good point about the minimum bounding rectangles. Thinking about it some more, I suspect that the RS speed of a kd-tree that uses minimum bounding rectangles, would be extremely similar to that of a R-tree really. Sure, the partitioning is a bit different but both have reasonable enough partitioning and with the minimum bounding rectangles the search algorithm would basically be the same.

Yeah, that rebalancing aspect is what prompted me to do some r-tree experiments in the past.

Rednaxela19:41, 22 December 2011