Outlier resistant APS system

Jump to navigation Jump to search

I think an outlier resistant APS system may be good, but I do have a concern that using the median may 1) distort scores when valid data would cause a distribution that has a skew, and 2) In the cases where there are no outliers for it to fix anyway, it would generate more noisy values (The median generally has larger fluctuations than the mean as samples are added).

I'd think it may be worth considering statistical methods to calculate the probability of a data point being an outlier, and ignoring it if it's beyond a threshold. It may be possible for such methods to not alter the means of skew caused by valid data, and will have smaller score fluctuations.

Another thought is, regardless of if we change the APS system or not, it may make sense for the rumble to have a page that lists recent outlier results, to make it easier to spot them.

Rednaxela17:46, 16 February 2012

One way to see skewed distributions is median taking it into account while mean assuming all distributions are symmetric. So it is not "distortion", but it may affect APS as we are used to.

But yes, mean needs less battles than median when the true average is near 50% (symmetric distributions) and there are no outliers.

There are other more sofisticated statistical methods for dealing with outliers, like percentile, which is somewhere between mean and median. But for me, median is good enough and is fully automated.

(I would never even imagine these things exist if it were not for Robocode and the quest for the ultimate statistical gun)

MN19:05, 16 February 2012

You do not have permission to edit this page, for the following reasons:

  • The action you have requested is limited to users in the group: Users.
  • You must confirm your email address before editing pages. Please set and validate your email address through your user preferences.

You can view and copy the source of this page.

Return to Thread:Talk:Darkcanuck/RRServer/Ratings/Outlier resistant APS system/reply (5).

Using z-score as threshold will need tuning to work properly, because it has unpredictable robustness. Remembering sampled standard deviations are also affected by outliers.

Choosing a very low percentile and a very high percentile as boundaries and averaging everything in between may have the effect you want without relying on noisy sampled deviations. Like 25%/75% (1st/3rd quartiles).

MN20:37, 16 February 2012