Tough to beat
It seems that the ideal thing would be to figure out a way to learn which class of targeting a robot belongs to. We know that it is harder than predicting how an enemy moves because the enemy give us way less information about his gun, but you could try some conditions (not only hit rate) to estimate this instead of letting your learner figure out everything about enemy's targeting method. I usually hate to mix hard-coded conditions with learning methods, but it could work out here.
Maybe you don't really need hard coded conditions here — they are really fragile, as you are making strong assumptions about your opponents.
Instead, even with less information, their targeting method will be explosed by the attributes they show after statistic. And why don't let your bot itself to figure out which targeting method it matches the best?
Just hard code a bunch of virtual guns like what EnergyDome do, and select the best. Then dodge.
That's the thing I try to put into a robot since I've first read this wiki. If we can decide which gun is better, why can't we decide which way to move is? I just intuitively think that the VG results may not come to a reasonable decision. I think it will take some time for it to figure out a difference between a normal GF gun and a top gun, if it ever figure it out correctly. I think there is a huge difference between what's the gun that hit me the most and which is the gun that enemy is using. It can be quite misleading. I would be happy to make this idea work, but I think I' have to come up with something better.
Notice that I understood simple GF targeters as simple, lightly segmented buffers.