Reason behind using Manhattan distance

Jump to navigation Jump to search

You do not have permission to edit this page, for the following reasons:

  • The action you have requested is limited to users in the group: Users.
  • You must confirm your email address before editing pages. Please set and validate your email address through your user preferences.

You can view and copy the source of this page.

Return to Thread:Talk:DrussGT/Understanding DrussGT/Reason behind using Manhattan distance/reply (2).

Log based was something like log(1+abs(a1-b1))

Skilgannon (talk)12:07, 23 August 2018
 

Just had a thought about DrussGT's hundreds of random VCS bins and Manhattan distance —

Consider we have infinite amount of random VCS buffers (random bin size and dimensions, weighted equally, no decay), then 1 distance increment in a dimension result in "1" decrease in the total of buffers (data weight) containing that data.

When distance increased in dimension A by 1, and distance increased in dimension B by 1 as well, then data weight decreased by 1 + 1 = 2, in the same way manhattan distance works.

If we use manhattan distance together with knn, and decrease weight linearly on data distance, it should yield similar result to random VCS.

However, once rolling average (decay) is used, things get a lot different there...

Xor (talk)16:43, 15 September 2018