View source for Talk:BeepBoop

From Robowiki
Jump to navigation Jump to search

Contents

Thread titleRepliesLast modified
Congratulations on 100% PWin!1203:25, 24 June 2021
Energy Management & Firepower Selection222:49, 23 June 2021
Awesome enty2317:57, 23 June 2021
First page
First page
Next page
Next page
Last page
Last page

Congratulations on 100% PWin!

I’ve been long wondering where the bar of top bots are, now BeepBoop proved that there’s still much to do here! Congratulations on the surprising result! May be I could start a new bot as well soon!

Xor (talk)04:04, 12 June 2021

For me it is not the 100% win, others achieved that too over time. It is the very dominant win, only 2 bots score better than 40%, and the gigantic survival, only 1 bot survives 30%. I have experimented with bulletpower, but never managed to get a real advantage with it. It seems however that the aggressive conservative way (whats in a name) of BeepBoop does pay off.

GrubbmGait (talk)17:11, 12 June 2021

Yeah, after this one I will do an experimental release with more standard energy management to see how much BeepBoop's is making a difference.

--Kev (talk)00:11, 15 June 2021
 

My experience is that everything is dependent, score is some "multiplication" of everything. With top class guns and top class wave surfing, tuning energy management gives a lot gain when it isn't done right, so does tuning bandwidth, bullet shadow, etc. But with different guns, and different wave surfing algorithms, the optimal of everything else is different, so past tuning gets outdated very soon.

Anyway, the most gain always come from: 1. Fixing some significant weakness 2. Adding some big feature, e.g. Wave Surfing 3. Getting everything in 1 and 2 right.

Xor (talk)01:24, 15 June 2021
 

Aye! Nicely done Kev! Seeing some of this sort of activity and similar kinda makes me feel tempted to come back to Robocode some time :)

Rednaxela (talk)05:35, 13 June 2021
 

Thanks everyone :). My theory is that "optimal" bots would be so good at dodging that there's nothing better than random targeting (taking into account walls, game physics, etc) against them. Certainly as bots get better hit rates go down, but I think there's a long way to go before bots are at that point.

--Kev (talk)00:19, 15 June 2021

DrussGT has a random gun as backup just in case some optimal bot does get invented ;) Unfortunately, it seems it has a weakness in the bullet power selection. I'll have to take a look at that...

Skilgannon (talk)18:55, 21 June 2021

Looking at DrussGT's virtual gun scores, the random gun does surprisingly close to the other ones against top surfers! The learned weights for BeepBoop's anti-surfer gun (1) put a lot of emphasis on wall features, (2) put basically no weight on historical features like time since decel, and (3) puts basically no weight on recency of the wave. This makes me wonder if BeepBoop's anti-surfer gun mostly acts as a slightly better random gun that is better at handling walls rather than something that learns patterns in the other bot's movement.

--Kev (talk)19:22, 22 June 2021

Well, DrussGT's random gun does take maximum reachable angles into account, which is probably 80% of wall effects. However there's probably something there about bots being hesitant to get closer to the enemy, even if they could potentially reach a further angle, which skews the distribution away from the reachable angles which are affected by walls. It would be interesting to do something with this hypothesis, but for me the random gun is really there as an emergency backup against someone simulating DrussGT's gun or something similar.

Skilgannon (talk)20:23, 22 June 2021
 

I had some strange experiment result. My guns are constantly doing worse than random against top surfers (oh no), but whenever I switch to some real random gun, it only decreased my score. Maybe a learning gun gives better bullet shadow? There's little study how guns affects bullet shadowing since its passive. Maybe adding some "active" thing to random gun helps.

Xor (talk)02:52, 23 June 2021

As long as both bots are using the same firepower, bullet collisions don't help you much: you don't get hit, but also you don't hit the opponent! So I thought a bit about adding active bullet shadowing to BeepBoop, but decided it wassn't worth the effort. I guess it could still help you situationally if for the moment your chance of hitting is lower than the opponent's. For example, if you are stuck near a wall, maybe you could create a shadow to cover your escape from the wall, but it would be complicated. Also for this reason, maybe hit rate should really be measured as hits / (shots - collisions), although getting this statistic for virtual guns isn't possible. If you are measuring hit rate as hits / shots, it could look like your random gun is better when really it just isn't creating as many bullet collisions.

--Kev (talk)17:50, 23 June 2021
 

And I guess BeepBoop's AS gun works pretty well not because its some better random, but rather most surfers have significant weakness near walls. They generally weight distance very high to prevent getting too close (future risk), but essentially making them weak at dodging bullets near this scenario. Some repeated patterns exist because they learned the hit but still get to the same position.

Xor (talk)03:21, 23 June 2021
 
 
 
 

Energy Management & Firepower Selection

You know, your description of using score estimation based firepower selection, reminded me that back in 2010-2011 I was working on a thing akin to that for Midboss. I'd commented on it some I'm sure, but don't think I ever described it in great deal, nor shared the code. I find it interesting to compare what I built back then to what BeepBoop is doing.

Posted it here now for interest's sake: Midboss/Score-Estimation_based_Firepower_Selection

It had some score estimation formulas that were pretty similar to BeepBoop's.... but one key difference made is far far slower. It performed that score estimation formula absurdly many times per tick. Rather than be content with some continuous-time estimate based on average rate of damage, it did brute force prediction of discrete future waves, all the permutations of hits/misses, for up to 30 waves into the future (though with caching to effectively re-join alike branches, since 2^30 would get silly), only performing the sort of score estimation BeepBoop does at a depth or minimum probability limit.

I'm not sure how much extra going for simulating discrete branching possibilities with discrete waves gained me, but the idea was that it this would give it some more potential for interesting emergent 'cleverness', such as around the precise timing of things or amount of energy left for firing toward the very very end of the round. Boy did it chew up CPU though.

The fact that BeepBoop is using a form of score estimation in it's firepower selection, tempts me to some day go back to try to refine what I had started back then, so thanks :-)

Rednaxela (talk)11:01, 23 June 2021

That's really cool, I didn't see that! I also built a bullet power simulator that took into account discrete firing, bullet flight time, etc. However, it didn't use tree search: I just did monte-carlo rollouts of running it a couple hundred times and averaging the results, so it's probably much slower than yours! It's not used in BeepBoop, but I did use it to validate that BeepBoop's fast estimates assuming continuous time, normal distribution for hitrate, etc. were about right. For example, here and here are some plots showing that BeepBoop's approximations work pretty well, although not perfectly and with some edge cases (it says file uploads are disabled so I can't add them to the wiki). I sometimes see interesting emergent behavior from BeeBoop like firing high-power bullets when it's losing, presumably either to get more bullet damage and take less bullet damage before it dies or in the hope that a lucky high-power hit turns things around.

--Kev (talk)18:31, 23 June 2021

I think I got uploading working... give it a try and let me know.

Skilgannon (talk)22:49, 23 June 2021
 
 

Awesome enty

This new bot of yours really is awesome ! It is really beating the hell out of the topbots, even without BulletShielding.

Alas I am not able to run any battles for it, as I am still on Java 8.

GrubbmGait (talk)14:48, 19 May 2021

Thanks! I will make it Java 8 compatible for the next release.

--Kev (talk)01:17, 20 May 2021

Just wanted to add to this thread, this robot truly is a beast! Congratulations on 100% PWIN!

Slugzilla (talk)05:20, 23 May 2021
 

alas, in version 0.11, still some parts are not Java 8 compatible: kc/mega/game/Battleffield has been compiled by version 57.0.
Does not matter that much, I am just not able (currently) to run any battles for it. Same for Raven as it has been compiled by version 55.0.

GrubbmGait (talk)12:14, 5 June 2021

Oops, I will have another go at fixing it for my next release!

--Kev (talk)07:58, 6 June 2021

I've downloaded Java 13, I can now run battles for BeepBoop. After rebuilding the robot-database, also Raven and WaveShark run fine. Note that for my development I will still use the compiler option '-source 1.8'

GrubbmGait (talk)12:14, 7 June 2021

Ok, great! I compiled 0.11 with --release 8, but I think it didn't work because there were some old .class files lying around that didn't get overridden.

--Kev (talk)23:49, 7 June 2021
 
 
 
 

Oh wow, missed this! Awesome work Kev, you have a history of popping up with surprise entries =)

I'd be curious to know more about the Tensorflow work you did to make the KNN features...

Skilgannon (talk)22:26, 13 June 2021

Thanks! I wrote a brief description under BeepBoop/Understanding_BeepBoop, but I'll release the code too once I get it cleaned up.

--Kev (talk)00:13, 15 June 2021

Aha, I missed the last section. Surprised there wasn't more to gain from some kind of deeper embedding model.

Skilgannon (talk)10:28, 15 June 2021

Me too, and I'll maybe revisit it at some point. Theoretically a deeper embedding model could learn feature interactions like "wall-ahead is more important when velocity is 8 than when it is 0"

--Kev (talk)20:33, 20 June 2021

I’m surprised as well. Btw, how many layers are you using in the deeper model? And is that fully connected? I guess some deeper models with explicit feature interactions may work better in robocode scenario, given high noise. I would try things like Deep&Cross, DeepFM, etc.

Xor (talk)06:31, 21 June 2021
 

You do not have permission to edit this page, for the following reasons:

  • The action you have requested is limited to users in the group: Users.
  • You must confirm your email address before editing pages. Please set and validate your email address through your user preferences.

You can view and copy the source of this page.

Return to Thread:Talk:BeepBoop/Awesome enty/reply (14).

 
 
 
 

Yeah, very cool to see! Congrats from me, too! And I'm enjoying reading about it.

Voidious (talk)16:29, 18 June 2021

Hey Voidious, long time no see! Glad you enjoyed reading about it, I learned a lot from Diamond's code while developing BeepBoop.

--Kev (talk)20:31, 20 June 2021
 
 
First page
First page
Next page
Next page
Last page
Last page