Awesome enty
Including several ticks of history seems like a nice way of removing the need for hand-crafted features like acceleration, time-since-velocity-change, distance-last-k-ticks, etc., and having the model learn them instead. Maybe a good model could even learn some PM-like behaviors.
Definitely a weakness of KNNs is generalization to new parts of the input space. I did think a bit about pre-training a model against a lot of bots and then quickly adapting it to the current opponent (maybe using meta-learning methods) so it would generalize better early in the match before it gets lots of data. On the other hand, aiming models get a lot of data pretty quickly, so I'm not sure of how much of an issue poor generalization really is.
You do not have permission to edit this page, for the following reasons:
You can view and copy the source of this page.
Return to Thread:Talk:BeepBoop/Awesome enty/reply (19).