User:Skilgannon/Free Code
Jump to navigation
Jump to search
This is a neat method that I made up. It takes array of 'indexes' between 0 and max and returns a double between 0 and 1 of how 'clustered' your array is. 1 if all the values are the same, and 0 if there are infinite values spread perfectly evenly. Note, this is very different from a standard deviation calculation. In this code there can be as many 'dense' points on the graph as you want, and it won't try to accommodate them all from one mean. Instead, it relies on the fact that (d + 1)*(d + 1) is always greater than (d + 1) for any d > 0.
public static double clustering(float[] indexes, float max){ float[] sorted = new float[indexes.length]; System.arraycopy(indexes,0,sorted,0,indexes.length); java.util.Arrays.sort(sorted); double clustering = sorted[0] + max - sorted[sorted.length - 1] + 1; clustering *= clustering; float min = sorted[0]; for(int i = 1; i < sorted.length; i++){ double diff = sorted[i] - min + 1; clustering += diff*diff; min = sorted[i]; } return (clustering - sorted.length + 1)/((max + 1)*(max + 1)); }