User:Voidious/Optimal Velocity
Jump to navigation
Jump to search
I don't want to clutter the Talk:Robocode/Game Physics page with full versions of this, but I want the updated full version somewhere... The goal is to go distance
in the fewest number of ticks, limited by Rules.ACCELERATION
, Rules.DECELERATION
, and currentCommands.getMaxVelocity()
.
private void updateMovement() { double distance = currentCommands.getDistanceRemaining(); if (Double.isNaN(distance)) { distance = 0; } velocity = getNewVelocity(velocity, distance); double dx = velocity * sin(bodyHeading); double dy = velocity * cos(bodyHeading); x += dx; y += dy; if (dx != 0 || dy != 0) { updateBoundingBox(); } if (distance != 0) { currentCommands.setDistanceRemaining(distance - velocity); } } /** * Returns the new velocity based on the current velocity and distance to move. * * @param velocity the current velocity * @param distance the distance to move * @return the new velocity based on the current velocity and distance to move */ private double getNewVelocity(double velocity, double distance) { // If the distance is negative, then change it to be positive and change the sign of the input velocity and the result if (distance < 0) { return -getNewVelocity(-velocity, -distance); } double newVelocity; // Get the speed, which is always positive (because it is a scalar) final double speed = Math.abs(velocity); if (velocity < 0) { // Check if we are decelerating, i.e. if the velocity is negative. newVelocity = speed - Rules.DECELERATION; // Check if we are going from deceleration into acceleration if (newVelocity < 0) { // If we have decelerated to velocity = 0, then the remaining time must be used for acceleration double decelTime = speed / Rules.DECELERATION; double accelTime = (1 - decelTime); // New velocity (v) = d / t, where time = 1 (i.e. 1 turn). Hence, v = d / 1 => v = d // However, the new velocity must be limited by the max. velocity newVelocity = Math.min(Rules.ACCELERATION * accelTime, distance)); // Note: We change the sign here due to the sign check later when returning the result velocity *= -1; } } else { // Deceleration distance (d) is calculated iteratively due to Robocode's // discrete time system. final double decelDist = decelDistance(speed); // Deceleration ticks is the number of ticks it will take to get to // zero velocity. final long decelTime = Math.round( // VOIDIOUS: for rounding errors? maybe unnecessary Math.ceil((speed - Rules.DECELERATION) / Rules.DECELERATION)); // The maximum distance coverable with an equivalent decelTime final double decelTimeMaxDist = ((decelTime + 1) / 2.0) * decelTime // sum of 1..decelTime * Rules.DECELERATION; if (distance <= Rules.DECELERATION) { // If we can cover remaining distance and then completely stop, // set speed = distance newVelocity = Math.max(speed - Rules.DECELERATION, distance); } else if (distance <= decelTimeMaxDist) { // If we can cover distance in decelTime, split any extra // distance (between decelDist and distance) over decelTime // ticks newVelocity = speed - Rules.DECELERATION + ((distance - decelDist) / decelTime); } else { // If we need more than decelTime ticks, try to spread the // extra distance over (decelTime + 1) ticks. This will just max // the acceleration if it needs to (ie, if we need more ticks). // VOIDIOUS: I think this part would break if Rules.ACCELERATION // were set above Rules.DECELERATION; we might need an // extra case or something. Doh. =( newVelocity = Math.min(speed + Rules.ACCELERATION, (decelTime * Rules.DECELERATION) + ((distance - decelTimeMaxDist) / Math.max(decelTime + 1, 2))); } } // VOIDIOUS: I think it makes more sense to do this here; no need to decelerate maximally // if you don't need to to accomodate a new setMaxVelocity. newVelocity = Math.max(speed - Rules.DECELERATION, Math.min(speed + Rules.ACCELERATION, Math.min(newVelocity, currentCommands.getMaxVelocity()))); // Return the new velocity with the correct sign. We have been working with the speed, which is always positive return (velocity < 0) ? -newVelocity : newVelocity; } private static final double decelDistance(double speed){ double distance = 0; while(speed > 0){ speed = Math.max(0,speed - Rules.DECELERATION); distance += speed; } return distance; }
- Version 1 posted in-line at Talk:Robocode/Game Physics.
- Version 2 bounds newVelocity by speed + Rules.ACCELERATION and sets a min of 2 for the number of ticks to split the extra distance over.
Phrasing this a different way, we might try to figure out the max velocity we can go now and still decelerate to a given distance. I think this works, and it does seem like a much more elegant solution.
double getMaxVelocity(double distance) { long decelTime = decelTime(distance); double decelDist = (decelTime / 2.0) * (decelTime-1) // sum of 0..(decelTime-1) * Rules.DECELERATION; return ((decelTime - 1) * Rules.DECELERATION) + ((distance - decelDist) / decelTime); } long decelTime(double distance) { long x = 1; do { // (square(x) + x) / 2) = 1, 3, 6, 10, 15... if (distance <= ((square(x) + x) / 2) * Rules.DECELERATION) { return x; } x++; } while (true); } long square(long i) { return i * i; }
I derived this by first mapping some things out for different distances, then dissecting it:
- [0, 2] - distance
- (2, 6] - 2 + ((distance-2)/2)
- (6, 12] - 4 + ((distance-6)/3)
- (12, 20] - 6 + ((distance-12)/4)