does bin smoothing make guns better or worse

Jump to navigation Jump to search

Estimating the PDF can still a useful component of finding the peak when not superimposing things, particular when the density of observations is sufficiently low. The main reasons you don't see much effect in targeting is that the usual bin sizes inherently act similar to a certain amount of smoothing anyway, and for targeting you have a larger number of observations than movement which reduces the amount of smoothing that makes sense as well. Consider what happens when your bins are significantly smaller than what is typical without any additional smoothing. (A targeting system that accounts for botwidth also reduces the amount of smoothing that makes sense, but that's a bit of a different matter)

Rednaxela (talk)14:41, 25 November 2013

You do not have permission to edit this page, for the following reasons:

  • The action you have requested is limited to users in the group: Users.
  • You must confirm your email address before editing pages. Please set and validate your email address through your user preferences.

You can view and copy the source of this page.

Return to Thread:User talk:Tmservo/does bin smoothing make guns better or worse/reply (7).

re: why in movement, agreed 100%.

With WaveSim, I've tested different kernel densities (effectively smoothing formulas) in my main gun over a huge data set. There were differences, but IIRC on the order of thousandths of a percent in hit percentage (eg 12.004% vs 12.002%). Not sure of the margin of error, either... 5k battles * ~25k ticks = millions of records, and both algorithms were running on the same data set.

Voidious (talk)01:56, 26 November 2013