View source for User talk:Xor

From Robowiki
Jump to navigation Jump to search

Contents

Thread titleRepliesLast modified
Manifold Learning217:20, 29 July 2021
Good to see robowiki is back!014:04, 12 June 2018

Manifold Learning

Guess Factor based methods generalize well, based on priori knowledge about robots moving in circles & max escape angle. Better methods such as precise max escape angle helps greatly. However given enough samples, I wonder whether some deep enough model can learn the shape of escape envelop, as well as precise max escape angle, etc. And generalize even better.

Xor (talk)13:25, 27 July 2021

You do not have permission to edit this page, for the following reasons:

  • The action you have requested is limited to users in the group: Users.
  • You must confirm your email address before editing pages. Please set and validate your email address through your user preferences.

You can view and copy the source of this page.

Return to Thread:User talk:Xor/Manifold Learning/reply.

The biggest challenge will be how to deal with different settings in recorded and aiming. Guess Factor indeed do this with orbital movement assumption, and PIF with not moving out of wall.


I'm thinking about some end2end deep model, where transformations between recorded and aiming angles can be learnt automatically. E.g. Given a sequence of historical wave intersect location, movement and bullet hits, try to predict the next wave intersect location.

Xor (talk)17:07, 29 July 2021
 
 

Good to see robowiki is back!

Thanks Skilgannon and Voidious for maintaining the awesome robowiki and literumble!

I almost couldn’t wait to put my new bots into rumble ;)

Xor (talk)14:03, 12 June 2018