Difference between pages "User:Rednaxela/kD-Tree" and "Wraith"

From Robowiki
< User:Rednaxela(Difference between pages)
Jump to navigation Jump to search
m (→‎The Code: aargh grammar)
 
(Restored edits authored by Wolfman dated 2019-11-09T17:52:35+00:00)
 
Line 1: Line 1:
A nice efficient small kD-Tree. Currently the fasted kD-Tree implementation on Robowiki. Feel free to use.
+
{{Navbox small
 +
| title = Wraith Sub-pages
 +
| parent = Wraith
 +
| page1 = Version History
 +
| page2 = Challenge Results
 +
| page3 = Wolfman's TODO List
 +
}}
  
== Plans ==
+
Wraith is a refactor of my bot [[AgentSmithRedux]].
  
Right now I'm working a rewrite, intended to have cleaner code, follow Java convention better, and be at least as fast. Current plans for the rewrite are:
+
{{Infobox Robot
* '''''Done!''''' <s>'''Cleaner code:''' Follow Java/OOP conventions better, since much that I abandoned in the below code was not necessary for speed.</s>
+
| author          = [[User:Wolfman|Wolfman]]
* '''''Done!''''' <s>'''Nearest Neighbor Iterator:''' Provides an iterator to get nearest neighbor. This allows iterated fetching in case one doesn't know exactly how many neighbors one needs (i.e. if some are unusable data points due to other checks). Theoretical speed penalety should be very slim, perhaps even negligible.</s>
+
| extends        = [[AdvancedRobot]]
* '''Further improved speed''': Yes, it's possible! Today I thought of three brand new techniques I should be able to use to increase speed further!
+
| targeting      = Virtual Guns with Linear, Circular and Head On Targeting
:* '''''Done!''''' <s>'''Flexible path ordering:''' Since 'second choice' paths already have a full distance-to-bounding-box calculation done, why not use this information in order to check the 'paths not yet taken' based that computed distance rather than tree structure. Should be more optimal.</s>
+
| movement        = [[DangerPrediction]]
:* '''''Unsuccessful. No improvement.''''' <s>'''Dimension-pruned distance calculations:''' With real data, there is often a situation where within a particular node, only some of the dimensions differ between points. It should be simple to track these 'unused' dimensions in a particular node and use this to optimize the distance calculation.</s>
+
| current_version = 0.1
:* '''Implicit Subtrees:''' I thought about how I'm using an array to store the 'bucket', and thought "wouldn't it be nice to not have to calculate the distance for every single point in the bucket..." Well, it turns out, that can be avoided, all while keeping it in the nice compact array! It's just a matter of turning the bucket arrays into [[wikipedia:Implicit kd-tree|implicit kd-trees]]! This should keep the advantages of the bucket system for making the incrementally created tree balanced, while at the same time being more efficient!
+
| download_link  = https://drive.google.com/uc?export=download&id=1MlGa-docshYLFIc2udl5qOyXdT4xL6KF
 +
| isOpenSource    = no
 +
| isOneOnOne      = yes
 +
| isMelee        = not yet but planned
 +
}}
  
I also plan to explore:
+
== Background Information ==
* [[wikipedia:R-tree|R-Tree]]/[[wikipedia:X-tree|X-Tree]] type structures. They allow n-ary trees instead of only 2-ary trees like kd-trees, are self-balancing. Might have good results.
 
* [[wikipedia:VP-tree|VP-Tree]] type structures. Splits based on distance to points may be more effective perhaps.
 
  
If you have any comments on these plans, comments would be appreciated: [[User talk:Rednaxela/kD-Tree]]
+
Returning after 3 years, I wanted to have a bit of fun and restart some robocode projects. Taking [[AgentSmithRedux]] and improving upon it for fun.
  
== The Code ==
+
It is currently in very early testing and is not expected to be competitive till it has all its intended features & iteration.
The newest version of this tree is [https://bitbucket.org/rednaxela/knn-benchmark/src/tip/ags/utils/dataStructures/trees/thirdGenKD/ now on Bitbucket]. It supports a KNN iterator that can save you computational time if you aren't sure exactly how many points you will need.
 
  
== Old Code ==
+
== Strategy ==
  
<code><syntaxhighlight>
+
;How does it [[:Category:Movement|move]]?
/**
 
* Copyright 2009 Rednaxela
 
*
 
* This software is provided 'as-is', without any express or implied
 
* warranty. In no event will the authors be held liable for any damages
 
* arising from the use of this software.
 
*
 
* Permission is granted to anyone to use this software for any purpose,
 
* including commercial applications, and to alter it and redistribute it
 
* freely, subject to the following restrictions:
 
*
 
*    1. The origin of this software must not be misrepresented; you must not
 
*    claim that you wrote the original software. If you use this software
 
*    in a product, an acknowledgment in the product documentation would be
 
*    appreciated but is not required.
 
*
 
*    2. This notice may not be removed or altered from any source
 
*    distribution.
 
*/
 
  
package ags.utils;
+
An evolution of the technique I've currently called [[DangerPrediction]] from [[AgentSmith]] which is a form of minimum risk movement whereby it plans its route ahead based on incoming predicted bullet positions from the enemies. It should theoretically work exactly the same in 1v1 and melee as the only difference is more incoming bullets in melee to avoid. Still plan to do a write up of [[DangerPrediction]] once its been nailed down and is competitive in 1v1.
  
import java.util.ArrayList;
+
At the time of writing it will dodge HOT & linear guns at around 99+% efficiency, but does not yet take into account more advanced techniques that could be fired at it.
import java.util.Arrays;
 
import java.util.LinkedList;
 
import java.util.List;
 
  
/**
+
;How does it [[:Category:Targeting|fire]]?
* An efficient well-optimized kd-tree
 
*
 
* @author Rednaxela
 
*/
 
public abstract class KdTree<T> {
 
    // Static variables
 
    private static final int          bucketSize = 24;
 
  
    // All types
+
Its currently just got a simple Virtual Gun array at the moment choosing the best gun between various guns including Linear, Circular and Head On.
    private final int                  dimensions;
 
    private final KdTree<T>            parent;
 
  
    // Root only
+
;How does it [[Dodging Bullets|dodge bullets]]?
    private final LinkedList<double[]> locationStack;
 
    private final Integer              sizeLimit;
 
  
    // Leaf only
+
See Movement above!
    private double[][]                locations;
 
    private Object[]                  data;
 
    private int                        locationCount;
 
  
    // Stem only
+
== Additional Information ==
    private KdTree<T>                  left, right;
 
    private int                        splitDimension;
 
    private double                    splitValue;
 
  
    // Bounds
+
;Where did you get the name?
    private double[]                  minLimit, maxLimit;
 
    private boolean                    singularity;
 
  
    // Temporary
+
Wraiths can only be hit by magical weapons! ;)
    private Status                    status;
 
  
    /**
+
== Credits ==
    * Construct a KdTree with a given number of dimensions and a limit on
 
    * maxiumum size (after which it throws away old points)
 
    */
 
    private KdTree(int dimensions, Integer sizeLimit) {
 
        this.dimensions = dimensions;
 
  
        // Init as leaf
+
Currently contains the source code for Raiko Micro's gun, but it is disabled as it was required for MC2K7 challenge testing.
        this.locations = new double[bucketSize][];
 
        this.data = new Object[bucketSize];
 
        this.locationCount = 0;
 
        this.singularity = true;
 
  
        // Init as root
+
== Thanks To ==
        this.parent = null;
 
        this.sizeLimit = sizeLimit;
 
        if (sizeLimit != null) {
 
            this.locationStack = new LinkedList<double[]>();
 
        }
 
        else {
 
            this.locationStack = null;
 
        }
 
    }
 
  
    /**
+
Everyone who contributes to the RoboWiki. It's an awesome resource, be proud of yourselves!
    * Constructor for child nodes. Internal use only.
 
    */
 
    private KdTree(KdTree<T> parent, boolean right) {
 
        this.dimensions = parent.dimensions;
 
  
        // Init as leaf
+
[[Category:1-vs-1_Bots|Wraith]]
        this.locations = new double[Math.max(bucketSize, parent.locationCount)][];
 
        this.data = new Object[Math.max(bucketSize, parent.locationCount)];
 
        this.locationCount = 0;
 
        this.singularity = true;
 
 
 
        // Init as non-root
 
        this.parent = parent;
 
        this.locationStack = null;
 
        this.sizeLimit = null;
 
    }
 
 
 
    /**
 
    * Get the number of points in the tree
 
    */
 
    public int size() {
 
        return locationCount;
 
    }
 
 
 
    /**
 
    * Add a point and associated value to the tree
 
    */
 
    public void addPoint(double[] location, T value) {
 
        KdTree<T> cursor = this;
 
 
 
        while (cursor.locations == null || cursor.locationCount >= cursor.locations.length) {
 
            if (cursor.locations != null) {
 
                cursor.splitDimension = cursor.findWidestAxis();
 
                cursor.splitValue = (cursor.minLimit[cursor.splitDimension] + cursor.maxLimit[cursor.splitDimension]) * 0.5;
 
 
 
                // Never split on infinity or NaN
 
                if (cursor.splitValue == Double.POSITIVE_INFINITY) {
 
                    cursor.splitValue = Double.MAX_VALUE;
 
                }
 
                else if (cursor.splitValue == Double.NEGATIVE_INFINITY) {
 
                    cursor.splitValue = -Double.MAX_VALUE;
 
                }
 
                else if (Double.isNaN(cursor.splitValue)) {
 
                    cursor.splitValue = 0;
 
                }
 
 
 
                // Don't split node if it has no width in any axis. Double the
 
                // bucket size instead
 
                if (cursor.minLimit[cursor.splitDimension] == cursor.maxLimit[cursor.splitDimension]) {
 
                    double[][] newLocations = new double[cursor.locations.length * 2][];
 
                    System.arraycopy(cursor.locations, 0, newLocations, 0, cursor.locationCount);
 
                    cursor.locations = newLocations;
 
                    Object[] newData = new Object[newLocations.length];
 
                    System.arraycopy(cursor.data, 0, newData, 0, cursor.locationCount);
 
                    cursor.data = newData;
 
                    break;
 
                }
 
 
 
                // Don't let the split value be the same as the upper value as
 
                // can happen due to rounding errors!
 
                if (cursor.splitValue == cursor.maxLimit[cursor.splitDimension]) {
 
                    cursor.splitValue = cursor.minLimit[cursor.splitDimension];
 
                }
 
 
 
                // Create child leaves
 
                KdTree<T> left = new ChildNode(cursor, false);
 
                KdTree<T> right = new ChildNode(cursor, true);
 
 
 
                // Move locations into children
 
                for (int i = 0; i < cursor.locationCount; i++) {
 
                    double[] oldLocation = cursor.locations[i];
 
                    Object oldData = cursor.data[i];
 
                    if (oldLocation[cursor.splitDimension] > cursor.splitValue) {
 
                        // Right
 
                        right.locations[right.locationCount] = oldLocation;
 
                        right.data[right.locationCount] = oldData;
 
                        right.locationCount++;
 
                        right.extendBounds(oldLocation);
 
                    }
 
                    else {
 
                        // Left
 
                        left.locations[left.locationCount] = oldLocation;
 
                        left.data[left.locationCount] = oldData;
 
                        left.locationCount++;
 
                        left.extendBounds(oldLocation);
 
                    }
 
                }
 
 
 
                // Make into stem
 
                cursor.left = left;
 
                cursor.right = right;
 
                cursor.locations = null;
 
                cursor.data = null;
 
            }
 
 
 
            cursor.locationCount++;
 
            cursor.extendBounds(location);
 
 
 
            if (location[cursor.splitDimension] > cursor.splitValue) {
 
                cursor = cursor.right;
 
            }
 
            else {
 
                cursor = cursor.left;
 
            }
 
        }
 
 
 
        cursor.locations[cursor.locationCount] = location;
 
        cursor.data[cursor.locationCount] = value;
 
        cursor.locationCount++;
 
        cursor.extendBounds(location);
 
 
 
        if (this.sizeLimit != null) {
 
            this.locationStack.add(location);
 
            if (this.locationCount > this.sizeLimit) {
 
                this.removeOld();
 
            }
 
        }
 
    }
 
 
 
    /**
 
    * Extends the bounds of this node do include a new location
 
    */
 
    private final void extendBounds(double[] location) {
 
        if (minLimit == null) {
 
            minLimit = new double[dimensions];
 
            System.arraycopy(location, 0, minLimit, 0, dimensions);
 
            maxLimit = new double[dimensions];
 
            System.arraycopy(location, 0, maxLimit, 0, dimensions);
 
            return;
 
        }
 
 
 
        for (int i = 0; i < dimensions; i++) {
 
            if (Double.isNaN(location[i])) {
 
                minLimit[i] = Double.NaN;
 
                maxLimit[i] = Double.NaN;
 
                singularity = false;
 
            }
 
            else if (minLimit[i] > location[i]) {
 
                minLimit[i] = location[i];
 
                singularity = false;
 
            }
 
            else if (maxLimit[i] < location[i]) {
 
                maxLimit[i] = location[i];
 
                singularity = false;
 
            }
 
        }
 
    }
 
 
 
    /**
 
    * Find the widest axis of the bounds of this node
 
    */
 
    private final int findWidestAxis() {
 
        int widest = 0;
 
        double width = (maxLimit[0] - minLimit[0]) * getAxisWeightHint(0);
 
        if (Double.isNaN(width)) width = 0;
 
        for (int i = 1; i < dimensions; i++) {
 
            double nwidth = (maxLimit[i] - minLimit[i]) * getAxisWeightHint(i);
 
            if (Double.isNaN(nwidth)) nwidth = 0;
 
            if (nwidth > width) {
 
                widest = i;
 
                width = nwidth;
 
            }
 
        }
 
        return widest;
 
    }
 
 
 
    /**
 
    * Remove the oldest value from the tree. Note: This cannot trim the bounds
 
    * of nodes, nor empty nodes, and thus you can't expect it to perfectly
 
    * preserve the speed of the tree as you keep adding.
 
    */
 
    private void removeOld() {
 
        double[] location = this.locationStack.removeFirst();
 
        KdTree<T> cursor = this;
 
 
 
        // Find the node where the point is
 
        while (cursor.locations == null) {
 
            if (location[cursor.splitDimension] > cursor.splitValue) {
 
                cursor = cursor.right;
 
            }
 
            else {
 
                cursor = cursor.left;
 
            }
 
        }
 
 
 
        for (int i = 0; i < cursor.locationCount; i++) {
 
            if (cursor.locations[i] == location) {
 
                System.arraycopy(cursor.locations, i + 1, cursor.locations, i, cursor.locationCount - i - 1);
 
                cursor.locations[cursor.locationCount-1] = null;
 
                System.arraycopy(cursor.data, i + 1, cursor.data, i, cursor.locationCount - i - 1);
 
                cursor.data[cursor.locationCount-1] = null;
 
                do {
 
                    cursor.locationCount--;
 
                    cursor = cursor.parent;
 
                } while (cursor != null);
 
                return;
 
            }
 
        }
 
        // If we got here... we couldn't find the value to remove. Weird...
 
    }
 
 
 
    /**
 
    * Enumeration representing the status of a node during the running
 
    */
 
    private static enum Status {
 
        NONE, LEFTVISITED, RIGHTVISITED, ALLVISITED
 
    }
 
 
 
    /**
 
    * Stores a distance and value to output
 
    */
 
    public static class Entry<T> {
 
        public final double distance;
 
        public final T      value;
 
 
 
        private Entry(double distance, T value) {
 
            this.distance = distance;
 
            this.value = value;
 
        }
 
    }
 
 
 
    /**
 
    * Calculates the nearest 'count' points to 'location'
 
    */
 
    @SuppressWarnings("unchecked")
 
    public List<Entry<T>> nearestNeighbor(double[] location, int count, boolean sequentialSorting) {
 
        KdTree<T> cursor = this;
 
        cursor.status = Status.NONE;
 
        double range = Double.POSITIVE_INFINITY;
 
        ResultHeap resultHeap = new ResultHeap(count);
 
 
 
        do {
 
            if (cursor.status == Status.ALLVISITED) {
 
                // At a fully visited part. Move up the tree
 
                cursor = cursor.parent;
 
                continue;
 
            }
 
 
 
            if (cursor.status == Status.NONE && cursor.locations != null) {
 
                // At a leaf. Use the data.
 
                if (cursor.locationCount > 0) {
 
                    if (cursor.singularity) {
 
                        double dist = pointDist(cursor.locations[0], location);
 
                        if (dist <= range) {
 
                            for (int i = 0; i < cursor.locationCount; i++) {
 
                                resultHeap.addValue(dist, cursor.data[i]);
 
                            }
 
                        }
 
                    }
 
                    else {
 
                        for (int i = 0; i < cursor.locationCount; i++) {
 
                            double dist = pointDist(cursor.locations[i], location);
 
                            resultHeap.addValue(dist, cursor.data[i]);
 
                        }
 
                    }
 
                    range = resultHeap.getMaxDist();
 
                }
 
 
 
                if (cursor.parent == null) {
 
                    break;
 
                }
 
                cursor = cursor.parent;
 
                continue;
 
            }
 
 
 
            // Going to descend
 
            KdTree<T> nextCursor = null;
 
            if (cursor.status == Status.NONE) {
 
                // At a fresh node, descend the most probably useful direction
 
                if (location[cursor.splitDimension] > cursor.splitValue) {
 
                    // Descend right
 
                    nextCursor = cursor.right;
 
                    cursor.status = Status.RIGHTVISITED;
 
                }
 
                else {
 
                    // Descend left;
 
                    nextCursor = cursor.left;
 
                    cursor.status = Status.LEFTVISITED;
 
                }
 
            }
 
            else if (cursor.status == Status.LEFTVISITED) {
 
                // Left node visited, descend right.
 
                nextCursor = cursor.right;
 
                cursor.status = Status.ALLVISITED;
 
            }
 
            else if (cursor.status == Status.RIGHTVISITED) {
 
                // Right node visited, descend left.
 
                nextCursor = cursor.left;
 
                cursor.status = Status.ALLVISITED;
 
            }
 
 
 
            // Check if it's worth descending. Assume it is if it's sibling has
 
            // not been visited yet.
 
            if (cursor.status == Status.ALLVISITED) {
 
                if (nextCursor.locationCount == 0
 
                        || (!nextCursor.singularity && pointRegionDist(location, nextCursor.minLimit,
 
                                nextCursor.maxLimit) > range)) {
 
                    continue;
 
                }
 
            }
 
 
 
            // Descend down the tree
 
            cursor = nextCursor;
 
            cursor.status = Status.NONE;
 
        } while (cursor.parent != null || cursor.status != Status.ALLVISITED);
 
 
 
        ArrayList<Entry<T>> results = new ArrayList<Entry<T>>(resultHeap.values);
 
        if (sequentialSorting) {
 
            while (resultHeap.values > 0) {
 
                resultHeap.removeLargest();
 
                results.add(new Entry<T>(resultHeap.removedDist, (T)resultHeap.removedData));
 
            }
 
        }
 
        else {
 
            for (int i = 0; i < resultHeap.values; i++) {
 
                results.add(new Entry<T>(resultHeap.distance[i], (T)resultHeap.data[i]));
 
            }
 
        }
 
 
 
        return results;
 
    }
 
 
 
    // Override in subclasses
 
    protected abstract double pointDist(double[] p1, double[] p2);
 
 
 
    protected abstract double pointRegionDist(double[] point, double[] min, double[] max);
 
 
 
    protected double getAxisWeightHint(int i) {
 
        return 1.0;
 
    }
 
 
 
    /**
 
    * Internal class for child nodes
 
    */
 
    private class ChildNode extends KdTree<T> {
 
        private ChildNode(KdTree<T> parent, boolean right) {
 
            super(parent, right);
 
        }
 
 
 
        // Distance measurements are always called from the root node
 
        protected double pointDist(double[] p1, double[] p2) {
 
            throw new IllegalStateException();
 
        }
 
 
 
        protected double pointRegionDist(double[] point, double[] min, double[] max) {
 
            throw new IllegalStateException();
 
        }
 
    }
 
 
 
    /**
 
    * Class for tree with Weighted Squared Euclidean distancing
 
    */
 
    public static class WeightedSqrEuclid<T> extends KdTree<T> {
 
        private double[] weights;
 
 
 
        public WeightedSqrEuclid(int dimensions, Integer sizeLimit) {
 
            super(dimensions, sizeLimit);
 
            this.weights = new double[dimensions];
 
            Arrays.fill(this.weights, 1.0);
 
        }
 
 
 
        public void setWeights(double[] weights) {
 
            this.weights = weights;
 
        }
 
 
 
        protected double getAxisWeightHint(int i) {
 
            return weights[i];
 
        }
 
 
 
        protected double pointDist(double[] p1, double[] p2) {
 
            double d = 0;
 
 
 
            for (int i = 0; i < p1.length; i++) {
 
                double diff = (p1[i] - p2[i]) * weights[i];
 
                if (!Double.isNaN(diff)) {
 
                    d += diff * diff;
 
                }
 
            }
 
 
 
            return d;
 
        }
 
 
 
        protected double pointRegionDist(double[] point, double[] min, double[] max) {
 
            double d = 0;
 
 
 
            for (int i = 0; i < point.length; i++) {
 
                double diff = 0;
 
                if (point[i] > max[i]) {
 
                    diff = (point[i] - max[i]) * weights[i];
 
                }
 
                else if (point[i] < min[i]) {
 
                    diff = (point[i] - min[i]) * weights[i];
 
                }
 
 
 
                if (!Double.isNaN(diff)) {
 
                    d += diff * diff;
 
                }
 
            }
 
 
 
            return d;
 
        }
 
    }
 
 
 
    /**
 
    * Class for tree with Unweighted Squared Euclidean distancing
 
    */
 
    public static class SqrEuclid<T> extends KdTree<T> {
 
        public SqrEuclid(int dimensions, Integer sizeLimit) {
 
            super(dimensions, sizeLimit);
 
        }
 
 
 
        protected double pointDist(double[] p1, double[] p2) {
 
            double d = 0;
 
 
 
            for (int i = 0; i < p1.length; i++) {
 
                double diff = (p1[i] - p2[i]);
 
                if (!Double.isNaN(diff)) {
 
                    d += diff * diff;
 
                }
 
            }
 
 
 
            return d;
 
        }
 
 
 
        protected double pointRegionDist(double[] point, double[] min, double[] max) {
 
            double d = 0;
 
 
 
            for (int i = 0; i < point.length; i++) {
 
                double diff = 0;
 
                if (point[i] > max[i]) {
 
                    diff = (point[i] - max[i]);
 
                }
 
                else if (point[i] < min[i]) {
 
                    diff = (point[i] - min[i]);
 
                }
 
 
 
                if (!Double.isNaN(diff)) {
 
                    d += diff * diff;
 
                }
 
            }
 
 
 
            return d;
 
        }
 
    }
 
 
 
    /**
 
    * Class for tree with Weighted Manhattan distancing
 
    */
 
    public static class WeightedManhattan<T> extends KdTree<T> {
 
        private double[] weights;
 
 
 
        public WeightedManhattan(int dimensions, Integer sizeLimit) {
 
            super(dimensions, sizeLimit);
 
            this.weights = new double[dimensions];
 
            Arrays.fill(this.weights, 1.0);
 
        }
 
 
 
        public void setWeights(double[] weights) {
 
            this.weights = weights;
 
        }
 
 
 
        protected double getAxisWeightHint(int i) {
 
            return weights[i];
 
        }
 
 
 
        protected double pointDist(double[] p1, double[] p2) {
 
            double d = 0;
 
 
 
            for (int i = 0; i < p1.length; i++) {
 
                double diff = (p1[i] - p2[i]);
 
                if (!Double.isNaN(diff)) {
 
                    d += ((diff < 0) ? -diff : diff) * weights[i];
 
                }
 
            }
 
 
 
            return d;
 
        }
 
 
 
        protected double pointRegionDist(double[] point, double[] min, double[] max) {
 
            double d = 0;
 
 
 
            for (int i = 0; i < point.length; i++) {
 
                double diff = 0;
 
                if (point[i] > max[i]) {
 
                    diff = (point[i] - max[i]);
 
                }
 
                else if (point[i] < min[i]) {
 
                    diff = (min[i] - point[i]);
 
                }
 
 
 
                if (!Double.isNaN(diff)) {
 
                    d += diff * weights[i];
 
                }
 
            }
 
 
 
            return d;
 
        }
 
    }
 
 
 
    /**
 
    * Class for tree with Manhattan distancing
 
    */
 
    public static class Manhattan<T> extends KdTree<T> {
 
        public Manhattan(int dimensions, Integer sizeLimit) {
 
            super(dimensions, sizeLimit);
 
        }
 
 
 
        protected double pointDist(double[] p1, double[] p2) {
 
            double d = 0;
 
 
 
            for (int i = 0; i < p1.length; i++) {
 
                double diff = (p1[i] - p2[i]);
 
                if (!Double.isNaN(diff)) {
 
                    d += (diff < 0) ? -diff : diff;
 
                }
 
            }
 
 
 
            return d;
 
        }
 
 
 
        protected double pointRegionDist(double[] point, double[] min, double[] max) {
 
            double d = 0;
 
 
 
            for (int i = 0; i < point.length; i++) {
 
                double diff = 0;
 
                if (point[i] > max[i]) {
 
                    diff = (point[i] - max[i]);
 
                }
 
                else if (point[i] < min[i]) {
 
                    diff = (min[i] - point[i]);
 
                }
 
 
 
                if (!Double.isNaN(diff)) {
 
                    d += diff;
 
                }
 
            }
 
 
 
            return d;
 
        }
 
    }
 
 
 
    /**
 
    * Class for tracking up to 'size' closest values
 
    */
 
    private static class ResultHeap {
 
        private final Object[] data;
 
        private final double[] distance;
 
        private final int      size;
 
        private int            values;
 
        public Object          removedData;
 
        public double          removedDist;
 
 
 
        public ResultHeap(int size) {
 
            this.data = new Object[size];
 
            this.distance = new double[size];
 
            this.size = size;
 
            this.values = 0;
 
        }
 
 
 
        public void addValue(double dist, Object value) {
 
            // If there is still room in the heap
 
            if (values < size) {
 
                // Insert new value at the end
 
                data[values] = value;
 
                distance[values] = dist;
 
                upHeapify(values);
 
                values++;
 
            }
 
            // If there is no room left in the heap, and the new entry is lower
 
            // than the max entry
 
            else if (dist < distance[0]) {
 
                // Replace the max entry with the new entry
 
                data[0] = value;
 
                distance[0] = dist;
 
                downHeapify(0);
 
            }
 
        }
 
 
 
        public void removeLargest() {
 
            if (values == 0) {
 
                throw new IllegalStateException();
 
            }
 
 
 
            removedData = data[0];
 
            removedDist = distance[0];
 
            values--;
 
            data[0] = data[values];
 
            distance[0] = distance[values];
 
            downHeapify(0);
 
        }
 
 
 
        private void upHeapify(int c) {
 
            for (int p = (c - 1) / 2; c != 0 && distance[c] > distance[p]; c = p, p = (c - 1) / 2) {
 
                Object pData = data[p];
 
                double pDist = distance[p];
 
                data[p] = data[c];
 
                distance[p] = distance[c];
 
                data[c] = pData;
 
                distance[c] = pDist;
 
            }
 
        }
 
 
 
        private void downHeapify(int p) {
 
            for (int c = p * 2 + 1; c < values; p = c, c = p * 2 + 1) {
 
                if (c + 1 < values && distance[c] < distance[c + 1]) {
 
                    c++;
 
                }
 
                if (distance[p] < distance[c]) {
 
                    // Swap the points
 
                    Object pData = data[p];
 
                    double pDist = distance[p];
 
                    data[p] = data[c];
 
                    distance[p] = distance[c];
 
                    data[c] = pData;
 
                    distance[c] = pDist;
 
                }
 
                else {
 
                    break;
 
                }
 
            }
 
        }
 
 
 
        public double getMaxDist() {
 
            if (values < size) {
 
                return Double.POSITIVE_INFINITY;
 
            }
 
            return distance[0];
 
        }
 
    }
 
}
 
 
 
</syntaxhighlight></code>
 

Revision as of 01:21, 25 April 2020

Wraith Sub-pages:
Version History - Challenge Results - Wolfman's TODO List

Wraith is a refactor of my bot AgentSmithRedux.

Wraith
Author(s) Wolfman
Extends AdvancedRobot
Targeting Virtual Guns with Linear, Circular and Head On Targeting
Movement DangerPrediction
Current Version 0.1
Download

Background Information

Returning after 3 years, I wanted to have a bit of fun and restart some robocode projects. Taking AgentSmithRedux and improving upon it for fun.

It is currently in very early testing and is not expected to be competitive till it has all its intended features & iteration.

Strategy

How does it move?

An evolution of the technique I've currently called DangerPrediction from AgentSmith which is a form of minimum risk movement whereby it plans its route ahead based on incoming predicted bullet positions from the enemies. It should theoretically work exactly the same in 1v1 and melee as the only difference is more incoming bullets in melee to avoid. Still plan to do a write up of DangerPrediction once its been nailed down and is competitive in 1v1.

At the time of writing it will dodge HOT & linear guns at around 99+% efficiency, but does not yet take into account more advanced techniques that could be fired at it.

How does it fire?

Its currently just got a simple Virtual Gun array at the moment choosing the best gun between various guns including Linear, Circular and Head On.

How does it dodge bullets?

See Movement above!

Additional Information

Where did you get the name?

Wraiths can only be hit by magical weapons! ;)

Credits

Currently contains the source code for Raiko Micro's gun, but it is disabled as it was required for MC2K7 challenge testing.

Thanks To

Everyone who contributes to the RoboWiki. It's an awesome resource, be proud of yourselves!