User:Chase-san/Kd-Tree
Jump to navigation
Jump to search
Everyone and their brother has one of these now, me and Simonton started it, but I was to inexperienced to get anything written, I took an hour or two to rewrite it today, because I am no longer completely terrible at these things. So here is mine if you care to see it.
This and all my other code in which I display on the robowiki falls under the ZLIB License.
Oh yeah, am I the only one that has a Range function?
KDTree
package org.csdgn.util;
import java.util.Arrays;
/**
* This is a KD Bucket Tree, for fast sorting and searching of K dimensional data.
* @author Chase
*
*/
public class KDTree<T> {
/**
* Item, for moving data around.
* @author Chase
*/
public static class Item {
public double[] pnt;
public Object obj;
public double distance;
private Item(double[] p, Object o) {
pnt = p; obj = o;
}
}
private final int dimensions;
private final int bucket_size;
private NodeKD root;
/**
* Constructor with value for dimensions.
* @param dimensions - Number of dimensions
*/
public KDTree(int dimensions) {
this.dimensions = dimensions;
this.bucket_size = 64;
this.root = new NodeKD();
}
/**
* Constructor with value for dimensions and bucket size.
* @param dimensions - Number of dimensions
* @param bucket - Size of the buckets.
*/
public KDTree(int dimensions, int bucket) {
this.dimensions = dimensions;
this.bucket_size = bucket;
this.root = new NodeKD();
}
/**
* Add a key and its associated value to the tree.
* @param key - Key to add
* @param val - object to add
*/
public void add(double[] key, T val) {
root.add(new Item(key,val));
}
/**
* Returns all PointKD within a certain range defined by an upper and lower PointKD.
* @param low - lower bounds of area
* @param high - upper bounds of area
* @return - All PointKD between low and high.
*/
public Item[] getRange(double[] low, double[] high) {
return root.range(high, low);
}
/**
* Gets the N nearest neighbors to the given key.
* @param key - Key
* @param num - Number of results
* @return Array of Item Objects, distances within the items
* are the square of the actual distance between them and the key
*/
public Item[] getNearestNeighbor(double[] key, int num) {
ShiftArray arr = new ShiftArray(num);
root.nearestn(arr, key);
return arr.getArray();
}
/**
* Compares arrays of double and returns the euclidean distance
* between them.
*
* @param a - The first set of numbers
* @param b - The second set of numbers
* @return The distance squared between <b>a</b> and <b>b</b>.
*/
public static final double distance(double[] a, double[] b) {
double total = 0;
for (int i = 0; i < a.length; ++i)
total += (b[i] - a[i]) * (b[i] - a[i]);
return Math.sqrt(total);
}
/**
* Compares arrays of double and returns the squared euclidean distance
* between them.
*
* @param a - The first set of numbers
* @param b - The second set of numbers
* @return The distance squared between <b>a</b> and <b>b</b>.
*/
public static final double distanceSq(double[] a, double[] b) {
double total = 0;
for (int i = 0; i < a.length; ++i)
total += (b[i] - a[i]) * (b[i] - a[i]);
return total;
}
//Internal tree node
private class NodeKD {
private NodeKD left, right;
private double[] upper, lower;
private Item[] bucket;
private int current, dim;
private double slice;
//note: we always start as a bucket
private NodeKD() {
upper = lower = null;
left = right = null;
bucket = new Item[bucket_size];
current = 0;
dim = 0;
}
//when we create non-root nodes within this class
//we use this one here
private NodeKD(NodeKD node) {
dim = node.dim + 1;
bucket = new Item[bucket_size];
if(dim + 1 > dimensions) dim = 0;
left = right = null;
upper = lower = null;
current = 0;
}
//what it says on the tin
private void add(Item m) {
if(bucket == null) {
//Branch
if(m.pnt[dim] > slice)
right.add(m);
else left.add(m);
} else {
//Bucket
if(current+1>bucket_size) {
split(m);
return;
}
bucket[current++] = m;
}
expand(m.pnt);
}
//nearest neighbor thing
private void nearestn(ShiftArray arr, double[] data) {
if(bucket == null) {
//Branch
if(data[dim] > slice) {
right.nearestn(arr, data);
if(left.current != 0) {
if(KDTree.distanceSq(left.nearestRect(data),data)
< arr.getLongest()) {
left.nearestn(arr, data);
}
}
} else {
left.nearestn(arr, data);
if(right.current != 0) {
if(KDTree.distanceSq(right.nearestRect(data),data)
< arr.getLongest()) {
right.nearestn(arr, data);
}
}
}
} else {
//Bucket
for(int i = 0; i < current; i++) {
bucket[i].distance = KDTree.distanceSq(bucket[i].pnt, data);
arr.add(bucket[i]);
}
}
}
//gets all items from within a range
private Item[] range(double[] upper, double[] lower) {
//TODO: clean this up a bit
if(bucket == null) {
//Branch
Item[] tmp = new Item[0];
if (intersects(upper,lower,left.upper,left.lower)) {
Item[] tmpl = left.range(upper,lower);
if(0 == tmp.length)
tmp = tmpl;
}
if (intersects(upper,lower,right.upper,right.lower)) {
Item[] tmpr = right.range(upper,lower);
if (0 == tmp.length)
tmp = tmpr;
else if (0 < tmpr.length) {
Item[] tmp2 = new Item[tmp.length + tmpr.length];
System.arraycopy(tmp, 0, tmp2, 0, tmp.length);
System.arraycopy(tmpr, 0, tmp2, tmp.length, tmpr.length);
tmp = tmp2;
}
}
return tmp;
}
//Bucket
Item[] tmp = new Item[current];
int n = 0;
for (int i = 0; i < current; i++) {
if (contains(upper, lower, bucket[i].pnt)) {
tmp[n++] = bucket[i];
}
}
Item[] tmp2 = new Item[n];
System.arraycopy(tmp, 0, tmp2, 0, n);
return tmp2;
}
//These are helper functions from here down
//check if this hyper rectangle contains a give hyper-point
public boolean contains(double[] upper, double[] lower, double[] point) {
if(current == 0) return false;
for(int i=0; i<point.length; ++i) {
if(point[i] > upper[i] ||
point[i] < lower[i])
return false;
}
return true;
}
//checks if two hyper-rectangles intersect
public boolean intersects(double[] up0, double[] low0,
double[] up1, double[] low1) {
for(int i=0; i<up0.length; ++i) {
if(up1[i] < low0[i] || low1[i] > up0[i]) return false;
}
return true;
}
//splits a bucket into a branch
private void split(Item m) {
//split based on our bound data
slice = (upper[dim]+lower[dim])/2.0;
left = new NodeKD(this);
right = new NodeKD(this);
for(int i=0; i<current; ++i) {
if(bucket[i].pnt[dim] > slice)
right.add(bucket[i]);
else left.add(bucket[i]);
}
bucket = null;
add(m);
}
//gets nearest point to data within this hyper rectangle
private double[] nearestRect(double[] data) {
double[] nearest = data.clone();
for(int i = 0; i < data.length; ++i) {
if(nearest[i] > upper[i]) nearest[i] = upper[i];
if(nearest[i] < lower[i]) nearest[i] = lower[i];
}
return nearest;
}
//expands this hyper rectangle
private void expand(double[] data) {
if(upper == null) {
upper = Arrays.copyOf(data, dimensions);
lower = Arrays.copyOf(data, dimensions);
return;
}
for(int i=0; i<data.length; ++i) {
if(upper[i] < data[i]) upper[i] = data[i];
if(lower[i] > data[i]) lower[i] = data[i];
}
}
}
//A simple shift array that sifts data up
//as we add new ones to lower in the array.
private class ShiftArray {
private Item[] items;
private final int max;
private int current;
private ShiftArray(int maximum) {
max = maximum;
current = 0;
items = new Item[max];
}
private void add(Item m) {
int i;
for(i=current;i>0&&items[i-1].distance > m.distance; --i);
if(i >= max) return;
if(current < max) ++current;
System.arraycopy(items, i, items, i+1, current-(i+1));
items[i] = m;
}
private double getLongest() {
if (current < max) return Double.POSITIVE_INFINITY;
return items[max-1].distance;
}
private Item[] getArray() {
return items.clone();
}
}
}