BerryBots updates

Jump to navigation Jump to search

You do not have permission to edit this page, for the following reasons:

  • The action you have requested is limited to users in the group: Users.
  • You must confirm your email address before editing pages. Please set and validate your email address through your user preferences.

You can view and copy the source of this page.

Return to Thread:User talk:Voidious/BerryBots updates/reply (15).

I had similar thoughts while making demonicRage, but never realized the value till reading yours. I think it would make a big improvement against advanced bots.. An "easy" way to test a diluted version of your concept, would be to predict the weekest bot on the field normally, then predict next weekest bot using the weaker bots predicted location and data... then predict 3rd bot using the 2 weaker bots predicted data..and so forth, so that the strongest opponent is predicted using all the predicted data of all the other bots.... That diluted method would likely be quick to jimmy up..

  • edit* on second thought that breaks the 'bots interaction' part of your concept :) oh-well :P
Jlm0924 (talk)18:11, 22 August 2013
 

Instead of classifying data using a single opponent at a time, classify by all opponents at the same time.

When predicting opponent´s A behaviour, instead of using only opponent´s A distance and velocity as input, use distance and velocity from other opponents too. The same principle applying to any kind of classification.

I thought about this before, but didn´t know how to deal with eliminated opponents. Thinking again, now I have some ideas.

MN (talk)14:18, 23 August 2013

One thing I've tried is attributes based on the force coming from an Anti-Gravity calculation. I thought it was going to be a killer feature, but despite being fairly rigorous to make sure it was doing what I wanted, I never got a performance gain out of it.

It seems like there must be a way to leverage that data, though.

Voidious (talk)17:12, 23 August 2013

If everyone used anti-gravity movement, assigned and weighted points the same way, it would work wonders.

Combat uses anti-gravity movement, but weights points differently, and also assign anti-gravity points on enemy virtual bullets (shrapnel dodging), which are invisible to opponents. Good luck to anyone trying to guess the resulting anti-gravity force.

Many intermediate anti-gravity bots also assign random anti-gravity points accross the battlefield in order to confuse opponents.

MN (talk)18:55, 23 August 2013
 

I'd say "use distance from other opponents too" and "force coming from an Anti-Gravity calculation" are similar to what I used in Glacier's targeting actually. I used several dimensions which (more or less) measured the closest distance to another bot at different angle ranges.

With anti-grav systems, different ones will weight things differently, but in all cases the most prominant influences are the closest ones. As such, my goal was to create a measure with a small finite number of dimensions, that characterized the most prominant influences meaningfully.

In any case though, all those methods don't really consider the field-wide interactions that can occur, where movements can cause a chain reaction. For that, I doubt there is much of a reasonable option besides some sort of iterative process (maybe not per-tick, could be larger steps or iterations that are not time-based, but yeah).

Rednaxela (talk)20:15, 23 August 2013

Interesting. In Neuromancer I make some KNN attributes relative to the closest enemy, so distance, latVel, advVel. Then I use PIF so it doesn't matter that the attributes were from somebody else's perspective.

Skilgannon (talk)20:29, 23 August 2013

PIF as well here. Sounds to me like your attributes are more done with a low density of melee bots in mind (i.e. closest enemy having much more influence than the second and third closest), whereas my attributes are mode done with a high density of melee bots in mind. Interesting.

Rednaxela (talk)21:06, 23 August 2013