BerryBots updates

Jump to navigation Jump to search

Instead of classifying data using a single opponent at a time, classify by all opponents at the same time.

When predicting opponent´s A behaviour, instead of using only opponent´s A distance and velocity as input, use distance and velocity from other opponents too. The same principle applying to any kind of classification.

I thought about this before, but didn´t know how to deal with eliminated opponents. Thinking again, now I have some ideas.

MN (talk)14:18, 23 August 2013

One thing I've tried is attributes based on the force coming from an Anti-Gravity calculation. I thought it was going to be a killer feature, but despite being fairly rigorous to make sure it was doing what I wanted, I never got a performance gain out of it.

It seems like there must be a way to leverage that data, though.

Voidious (talk)17:12, 23 August 2013

You do not have permission to edit this page, for the following reasons:

  • The action you have requested is limited to users in the group: Users.
  • You must confirm your email address before editing pages. Please set and validate your email address through your user preferences.

You can view and copy the source of this page.

Return to Thread:User talk:Voidious/BerryBots updates/reply (19).

 

I'd say "use distance from other opponents too" and "force coming from an Anti-Gravity calculation" are similar to what I used in Glacier's targeting actually. I used several dimensions which (more or less) measured the closest distance to another bot at different angle ranges.

With anti-grav systems, different ones will weight things differently, but in all cases the most prominant influences are the closest ones. As such, my goal was to create a measure with a small finite number of dimensions, that characterized the most prominant influences meaningfully.

In any case though, all those methods don't really consider the field-wide interactions that can occur, where movements can cause a chain reaction. For that, I doubt there is much of a reasonable option besides some sort of iterative process (maybe not per-tick, could be larger steps or iterations that are not time-based, but yeah).

Rednaxela (talk)20:15, 23 August 2013

Interesting. In Neuromancer I make some KNN attributes relative to the closest enemy, so distance, latVel, advVel. Then I use PIF so it doesn't matter that the attributes were from somebody else's perspective.

Skilgannon (talk)20:29, 23 August 2013

PIF as well here. Sounds to me like your attributes are more done with a low density of melee bots in mind (i.e. closest enemy having much more influence than the second and third closest), whereas my attributes are mode done with a high density of melee bots in mind. Interesting.

Rednaxela (talk)21:06, 23 August 2013