Tough to beat
Maybe I'm late on noticing this (took some days off from Robocode), but your bot is really tough to beat! Congrats on that, that's amazing since a reasonable portion of the bots on top-10 are pretty much beatable. I'm struggling against ScalarBot as hard as I struggle against Gilgalad. Keep up the good work. And 8% vote is just incredible :)
You do not have permission to edit this page, for the following reasons:
You can view and copy the source of this page.
Return to Thread:Talk:ScalarBot/Tough to beat/reply.
It seems that the ideal thing would be to figure out a way to learn which class of targeting a robot belongs to. We know that it is harder than predicting how an enemy moves because the enemy give us way less information about his gun, but you could try some conditions (not only hit rate) to estimate this instead of letting your learner figure out everything about enemy's targeting method. I usually hate to mix hard-coded conditions with learning methods, but it could work out here.
Maybe you don't really need hard coded conditions here — they are really fragile, as you are making strong assumptions about your opponents.
Instead, even with less information, their targeting method will be explosed by the attributes they show after statistic. And why don't let your bot itself to figure out which targeting method it matches the best?
Just hard code a bunch of virtual guns like what EnergyDome do, and select the best. Then dodge.
That's the thing I try to put into a robot since I've first read this wiki. If we can decide which gun is better, why can't we decide which way to move is? I just intuitively think that the VG results may not come to a reasonable decision. I think it will take some time for it to figure out a difference between a normal GF gun and a top gun, if it ever figure it out correctly. I think there is a huge difference between what's the gun that hit me the most and which is the gun that enemy is using. It can be quite misleading. I would be happy to make this idea work, but I think I' have to come up with something better.
Notice that I understood simple GF targeters as simple, lightly segmented buffers.
Or, can we partition all guns (without VG array) to three types — non-learning guns, statistical guns, and pattern matchers? HOT, LT, CT would fall in the first type, and Traditional GF guns the second type. Pattern matchers obviously the third type. And a highly segemented GF gun, or a DC gun, would then be something between statistical guns and pattern matchers.
For non-learning guns, the bearing offset they are firing at remain a constant at each situation, and hard code a bunch of them is also easy.
Statistical guns learn slowly, and for a given situation, their firings keep the same for a period of time. Also, they tend to fire at past firing angles, the more they fired at a given angle, the more likely they will fire at that angle in the future.
Pattern matchers are unpredictable, unless you know their exact settings. The only thing you can do is to be unpredictable as well, and add some noise in your movement.
The main stream wave surfing is mainly assuming something simular to statistical guns. They keep track of enemy firings, then dodge them deliberately. Recorded firing angles are often weighted on frequency & elapsed time.
This approach works very well against statistical guns, and it's also good for dodging non-learning guns without VG array. However, its gain is also its weakness, e.g. pattern matchers work well, not to mention lightly segmented fast decay gun.
I think it's not hard to separate a non-learning gun from everything that learns, however, a statistical gun can not be separated that well from pattern matchers. Anyway, hit rate is always some good criteria, although maybe not the best.
Apart from enemy hit rate, another approach may be using a bunch of buffers (or trees), some keep tabs on hit, some keep tabs on visit. And as a criteria, not only use buffer "hit rate", but also miss rate, as miss rate is what affects enemy hit rate the most. And this is mostly what Tomcat does.
Yeah, congrats for the strong vote and PL! It's actually interesting what your list of problem bots are, you have some interesting ones like SilverSurfer and SniperFrog. I guess your unique movement makes you susceptible to different specific types of guns.
Also I think vote is a really interesting score metric. While it does say how strong your bot is, it also says how unique your bot is, since you only need to be best by a very small margin, and against a specific set of bots. Getting vote for a small set of bots is hard. Getting vote much higher is really, really hard.
Thanks a lot! And it also has a lot of interesting problems bots which is relatively simple, e.g. FloodHT, which segments simply on whether near wall or not, and with some traditional ones like distance. No fancy attributes, no decay, but it hits me well ;)
Agree that vote is really hard to earn, and it is often earned with surprise ;) Maybe what contributes to vote the most is movement, when you dodge effectively. But a really strong gun which is able to exploit some hidden weakness may also help.
Anyway, ScalarBot's gun is unchanged at all since initial release, and it also has a lot of bugs I'm not fixing now ;) Maybe some bug also make its targeting unique, giving some bot a trouble.