Randomized surfing

Fragment of a discussion from Talk:Phantom
Jump to navigation Jump to search

My addendum on why random surfing usually hasn't worked out so well also has the following point: In the cases where you scale your random range to where you can reach, there's an additional problem, which is that to my knowledge almost all attempts at such have used a simple goto method or orbit to get to the next GF that was selected, which potentially gives away information about where they were trying to get for that wave earlier than it strictly had to. I suspect that if one adds some smart randomization the timing/velocity/heading during the path used to get to the chosen GF, the result will be blurred as far as the usual statistical analysis is concerned.

Edit for more specific example: If one is using a traditional "orbit until selected GF" method for instance, as soon as you're stopped or begin to decelerate, you've given away exactly where you intend to be for that wave. How early the signal is given away varies depending on how far that GF is from where you ended up on the prior wave, but either way it adds clarity to statistics of where you'll be on future waves. The idea is to add uncertainty to that signal, instead of giving them absolute certainty about where you'll be in a few ticks.

Rednaxela (talk)15:40, 11 November 2013

Edit: Sorry, you didn't mean "traditional" surfing, you meant "traditional go-to random GF". :-) But anyway, my latest attempt at random surfing actually randomized the stats that my normal surfing algorithm works from, so it shouldn't have been subject to any tells re: what path I take to get to the "target/random GF".

Voidious (talk)19:05, 11 November 2013

I have been thinking about random movements, but I was not able to devise an algorithm which have a linear displacement grow with time. Every time I put, roughly speaking, a choice of stop, back, forward. I see that bot perform diffusive/brownian type motion which as math teaches has displacement grows as sqrt of time. So the simplest of all guns: head on has the highest chance of success. From other hand it is very unlikely, that such bot will reach the ends of the guess factor ranges. Which yet again make it easy target due to limited ranges in a GF metric.

My current bot has such randomness buil in, affected by the danger map, yet it still likes to hang in one place, which makes it an easy target to GF guns (I think) and may be even DC guns.

Beaming (talk)04:45, 12 November 2013