And to make it even faster
Fragment of a discussion from User talk:Dsekercioglu/MEA
Jump to navigation
Jump to search
- Actually, I'm not sure that Traditional MEA is correct. It assumes that the bot doesn't change it's move angle until the wave hits. Because of that you can't get a MEA higher than Pi / 2 with Traditional MEA formula. When you move orbitally, lateralVelocity / (bulletSpeed + advancingVelocity) is the formula that will give you the EA so you can get a EA higher than Pi / 2.
Dsekercioglu (talk)
You can't get escape angle higher than Pi/2 by the traditional formula simply because it is impossible.
If your formula can, it must be wrong.
- Found it!
- It should be sin(a) / (v / 8 - cos(a) / 2).
Dsekercioglu (talk)
- I found a formula higher than Traditional MEA and this one should be correct.
Math.asin(Math.sin(angle) / (bulletSpeed / 8 - Math.cos(angle) / 2))
Dsekercioglu (talk)
I don't think that this one is wrong. I only added advancing velocity to the Traditional MEA which shouldn't break anything with the calculations.
Dsekercioglu (talk)
I don't need integral. I can get the average distance.
distance - (advancingVelocity * timeToHit / 2) = bulletFloatTime - advancingVelocity / 2
Dsekercioglu (talk)
No you can't use average distance, as distance is used like x / distance, not x * distance.
- It is equal at infinity.
(8 / 5 + 1 + 8 / 11) / 3 = 1.109090909... (8 / 5 + 8 / 6.5 + 1 + 8 / 9.5 + 8 / 11) / 5 = 1.080029444...
- This goes closer to 1 every time I decrease the step size.
Dsekercioglu (talk)