# And to make it even faster

• Actually, I'm not sure that Traditional MEA is correct. It assumes that the bot doesn't change it's move angle until the wave hits. Because of that you can't get a MEA higher than Pi / 2 with Traditional MEA formula. When you move orbitally, lateralVelocity / (bulletSpeed + advancingVelocity) is the formula that will give you the EA so you can get a EA higher than Pi / 2.
16:09, 24 September 2017

You can't get escape angle higher than Pi/2 by the traditional formula simply because it is impossible.

If your formula can, it must be wrong.

Xor (talk)16:12, 24 September 2017
Found it!
It should be sin(a) / (v / 8 - cos(a) / 2).
16:15, 24 September 2017

The only correct formula to calculate the escape angle of orbital movement where [itex]v_{retreat}[/itex] is not zero is using integral.

Anything else is wrong.

Xor (talk)16:18, 24 September 2017

I found a formula higher than Traditional MEA and this one should be correct.
```Math.asin(Math.sin(angle) / (bulletSpeed / 8 - Math.cos(angle) / 2))
```
16:19, 24 September 2017

Anything higher than traditional formula is obviously wrong.

Xor (talk)16:21, 24 September 2017

I don't think that this one is wrong. I only added advancing velocity to the Traditional MEA which shouldn't break anything with the calculations.

16:26, 24 September 2017

No, advancing velocity makes distance not constant, therefore you mast use integral.

Xor (talk)00:44, 25 September 2017

I don't need integral. I can get the average distance.

```distance - (advancingVelocity * timeToHit / 2) = bulletFloatTime - advancingVelocity / 2
```
11:08, 25 September 2017

No you can't use average distance, as distance is used like x / distance, not x * distance.

Xor (talk)12:08, 25 September 2017
It is equal at infinity.
```(8 / 5 + 1 + 8 / 11) / 3 = 1.109090909...
(8 / 5 + 8 / 6.5 + 1 + 8 / 9.5 + 8 / 11) / 5  = 1.080029444...
```
This goes closer to 1 every time I decrease the step size.
15:06, 25 September 2017